cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A055551 Number of base-2 Euler-Jacobi pseudoprimes (A047713) less than 10^n.

Original entry on oeis.org

0, 0, 1, 12, 36, 114, 375, 1071, 2939, 7706, 20417, 53332, 139597, 364217, 957111, 2526795, 6725234, 18069359, 48961462
Offset: 1

Views

Author

Keywords

Comments

Pomerance et al. gave the terms a(3)-a(10). Pinch gave the terms a(4)-a(13), but a(13)=124882 was wrong. He later calculated the correct value, which appears in Guy's book. - Amiram Eldar, Nov 08 2019

Examples

			Below 10^3 there is only one Euler-Jacobi pseudoprime, 561. Therefore a(3) = 1.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, section A12, p. 44.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 219.

Crossrefs

Programs

  • Mathematica
    ejpspQ[n_] := CompositeQ[n] && PowerMod[2, (n - 1)/2, n] == Mod[JacobiSymbol[2, n], n]; s = {}; c = 0; p = 10; n = 1; Do[If[ejpspQ[n], c++]; If[n > p, AppendTo[s, c]; p *= 10], {n, 1, 1000001, 2}]; s (* Amiram Eldar, Nov 08 2019 *)

Extensions

a(13) corrected and a(14)-a(19) added by Amiram Eldar, Nov 08 2019 (calculated from Feitsma & Galway's tables)

A329237 The number of base-2 Euler-Jacobi pseudoprimes (A047713) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 8, 10, 15, 20, 29, 42, 57, 81, 118, 179, 246, 348, 481, 654, 893, 1231, 1642, 2188, 3003, 4033, 5367, 7252, 9681, 12961, 17460, 23351, 31224, 41623, 55455, 74124, 99127, 132426, 176466, 235792, 314338, 420106, 562476, 751769, 1006184
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2019

Keywords

Examples

			Below 2^10 = 1024 there is only one Euler-Jacobi pseudoprime, 561. Therefore a(10) = 1.
		

Crossrefs

Programs

  • Mathematica
    ejpspQ[n_] := CompositeQ[n] && PowerMod[2, (n - 1)/2, n] == Mod[JacobiSymbol[2, n], n]; s = {}; c = 0; p = 2; n = 1; Do[If[ejpspQ[n], c++]; If[n > p, AppendTo[s, c]; p *= 2], {n, 1, 2^20 + 1, 2}]; s

A244626 Composite numbers k congruent to 5 (mod 8) such that 2^((k-1)/2) mod k = k-1.

Original entry on oeis.org

3277, 29341, 49141, 80581, 88357, 104653, 196093, 314821, 458989, 489997, 800605, 838861, 873181, 1004653, 1251949, 1373653, 1509709, 1678541, 1811573, 1987021, 2269093, 2284453, 2387797, 2746477, 2909197, 3400013, 3429037, 3539101, 3605429, 4360621, 4502485, 5590621, 5599765
Offset: 1

Views

Author

Gary Detlefs, Jul 02 2014

Keywords

Comments

This sequence contains the n mod 8 = 5 pseudoprimes to the following modified Fermat primality criterion:
Conjecture 1: if p is an odd prime congruent to {3,5} (mod 8) then 2^((p-1)/2) mod p = p-1.
This conjecture has been tested to 10^8.
This criterion produces far fewer pseudoprimes than the 2^(n-1) mod n = 1 test and thus has a higher probability of success. The number of pseudoprimes for the two tests up to 10^k are:
10^5 5 26 19.23%
10^6 13 78 16.66%
10^7 40 228 17.54%
There are 40 terms < 10^7. If an additional constraint 3^(n-1) mod n = 1 and 5^(n-1) mod n = 1 is added, only 4 terms remain: (29341, 314821, 873181, 9863461).
This sequence appears to be a subset of A175865, A001262, A047713, A020230.
Number of terms below 10^k for k = 5..15: 5, 13, 40, 132, 369, 975, 2534, 6592, 17403, 45801, 122473. The corresponding numbers for 2^(n-1) mod n = 1: 26, 78, 228, 637, 1718, 4505, 11645, 29902, 76587, 197455, 513601. - Jens Kruse Andersen, Jul 13 2014
Also composite numbers 2n+1 with n even such that 2n+1 | 2^n+1. - Hilko Koning, Jan 27 2022
Conjecture 1 is true. With p = 2k+1 then 2^k mod (2k+1) == 2k. So 2k+1 | 2k-2^k. Prime numbers 2k+1 == +-3 (mod 8) are the prime numbers such that 2k+1 | 2^k+1 (Comments A007520). A reflection across the x-axis and +1 translation across the y-axis of the graph (2k-2^k) / (2k+1) gives the graph (2^k+1) / (2k+1). So the k values of both 2k+1 | 2k-2^k and 2k+1 | 2^k+1 are identical. - Hilko Koning, Feb 04 2022

Crossrefs

Programs

  • Maple
    for n from 5 to 10^7 by 8 do if 2^((n-1)/2) mod n = n-1 and not isprime(n) then print(n) fi od;

Extensions

a(18) corrected by Jens Kruse Andersen, Jul 13 2014

A006971 Composite numbers k such that k == +-1 (mod 8) and 2^((k-1)/2) == 1 (mod k).

Original entry on oeis.org

561, 1105, 1729, 1905, 2047, 2465, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 30121, 33153, 34945, 41041, 42799, 46657, 52633, 62745, 65281, 74665, 75361, 85489, 87249, 90751, 113201, 115921, 126217, 129921, 130561, 149281, 158369
Offset: 1

Views

Author

Keywords

Comments

Previous name was "Terms of A047713 that are congruent to +-1 mod 8".
Complement of (A244626 union A244628) with respect to A047713. - Jianing Song, Sep 18 2018

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A12, pp. 44-50.
  • Hans Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A001567 and A047713.

Programs

  • Mathematica
    Select[Range[10^5], MemberQ[{1, 7}, Mod[#, 8]] && CompositeQ[#] && PowerMod[2, (# - 1)/2, #] == 1 &] (* Amiram Eldar, Nov 06 2023 *)

Extensions

This sequence appeared as M5461 in Sloane-Plouffe (1995), but was later mistakenly declared to be an erroneous form of A047713. Thanks to Jianing Song for providing the correct definition. - N. J. A. Sloane, Sep 17 2018
Formal definition by Jianing Song, Sep 18 2018

A048950 Base-3 Euler-Jacobi pseudoprimes.

Original entry on oeis.org

121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585, 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 44287, 46657, 47197, 49141, 50881, 52633, 55969, 63139, 63973, 74593, 75361, 79003, 82513
Offset: 1

Views

Author

Keywords

Comments

Odd composite k with gcd(k,3) = 1 and 3^((k-1)/2) == (3,k) (mod k) where (.,.) is the Jacobi symbol. - R. J. Mathar, Jul 15 2012
The base 5 Euler-Jacobi pseudoprimes are 781, 1541, 1729, 5461, 5611, 6601, 7449, ... - R. J. Mathar, Jul 15 2012 [Typo fixed; this is A375914. - Jianing Song, Sep 02 2024]

Crossrefs

Cf. A005935.
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | this seq | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • Mathematica
    Select[Range[1, 10^5, 2], GCD[#, 3] == 1 && CompositeQ[#] && PowerMod[3, (# - 1)/2, #] == Mod[JacobiSymbol[3, #], #] &] (* Amiram Eldar, Jun 28 2019 *)
  • PARI
    is(n) = n%2==1 && gcd(n,3)==1 && Mod(3, n)^((n-1)/2)==kronecker(3,n)
    forcomposite(c=1, 83000, if(is(c), print1(c, ", "))) \\ Felix Fröhlich, Jul 15 2019

A033181 Absolute Euler pseudoprimes: odd composite numbers n such that a^((n-1)/2) == +-1 (mod n) for every a coprime to n.

Original entry on oeis.org

1729, 2465, 15841, 41041, 46657, 75361, 162401, 172081, 399001, 449065, 488881, 530881, 656601, 670033, 838201, 997633, 1050985, 1615681, 1773289, 1857241, 2113921, 2433601, 2455921, 2704801, 3057601, 3224065, 3581761, 3664585, 3828001, 4463641, 4903921
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

These numbers n have the property that, for each prime divisor p, p-1 divides (n-1)/2. E.g., 2465 = 5*17*29; 1232/4 = 308; 1232/16 = 77; 1232/28 = 44. - Karsten Meyer, Nov 08 2005
All these numbers are Carmichael numbers (A002997). - Daniel Lignon, Sep 12 2015
These are odd composite numbers n such that b^((n-1)/2) == 1 (mod n) for every base b that is a quadratic residue modulo n and coprime to n. There are no odd composite numbers n such that b^((n-1)/2) == -1 (mod n) for every base b that is a quadratic non-residue modulo n and coprime to n. Note: the absolute Euler-Jacobi pseudoprimes do not exist. Theorem: if an absolute Euler pseudoprime n is a Proth number, then b^((n-1)/2) == 1 for every b coprime to n; by Proth's theorem. Such numbers are 1729, 8355841, 40280065, 53282340865, ...; for example, 1729 = 27*2^6 + 1 with 27 < 2^6. However, it seems that all absolute Euler pseudoprimes n satisfy the stronger congruence b^((n-1)/2) == 1 (mod n) for every b coprime to n, as evidenced by the modified Korselt's criterion (see the first comment). It should be noted that these are odd numbers n such that Carmichael's lambda(n) divides (n-1)/2. Also, these are odd numbers n > 1 coprime to Sum_{k=1..n-1} k^{(n-1)/2}. - Amiram Eldar and Thomas Ordowski, Apr 29 2019
Carmichael numbers k such that (p-1)|(k-1)/2 for each prime p|k. These are odd composite numbers k with half (the maximal possible fraction) of the numbers 1 <= b < k coprime to k that are bases in which k is an Euler-Jacobi pseudoprime, i.e. A329726((k-1)/2)/phi(k) = 1/2. - Amiram Eldar, Nov 20 2019
By Karsten Meyer's and Amiram Eldar's comment, this sequence is numbers k > 1 such that 2*psi(k) | (k-1), where psi = A002322. This means that if k is a term in this sequence, then we actually have a^((k-1)/2) == 1 (mod k) for every a coprime to k. - Jianing Song, Sep 03 2024

Crossrefs

Programs

  • Maple
    filter:=  proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      if not numtheory:-issqrfree(n) then return false fi;
      for q in numtheory:-factorset(n) do
        if (n-1)/2 mod (q-1) <> 0 then return false fi
      od:
      true;
    end proc:
    select(filter, [seq(i,i=3..10^7,2)]); # Robert Israel, Nov 24 2015
  • Mathematica
    absEulerpspQ[n_Integer?PrimeQ]:=False;
    absEulerpspQ[n_Integer?EvenQ]:=False;
    absEulerpspQ[n_Integer?OddQ]:=Module[{a=2},
    While[aDaniel Lignon, Sep 09 2015 *)
    aQ[n_] := Module[{f = FactorInteger[n], p},p=f[[;;,1]]; Length[p] > 1 && Max[f[[;;,2]]]==1 && AllTrue[p, Divisible[(n-1)/2, #-1] &]];Select[Range[3, 2*10^5], aQ] (* Amiram Eldar, Nov 20 2019 *)
  • Perl
    use ntheory ":all"; my $n; foroddcomposites { say if is_carmichael($) && vecall { (($n-1)>>1) % ($-1) == 0 } factor($n=$); } 1e6; # _Dana Jacobsen, Dec 27 2015

Formula

a(n) == 1 (mod 4). - Thomas Ordowski, May 02 2019

Extensions

"Absolute Euler pseudoprimes" added to name by Daniel Lignon, Sep 09 2015
Definition edited by Thomas Ordowski, Apr 29 2019

A306310 Odd numbers k > 1 such that 2^((k-1)/2) == -(2/k) = -A091337(k) (mod k), where (2/k) is the Jacobi (or Kronecker) symbol.

Original entry on oeis.org

341, 5461, 10261, 15709, 31621, 49981, 65077, 83333, 137149, 176149, 194221, 215749, 219781, 276013, 282133, 534061, 587861, 611701, 653333, 657901, 665333, 688213, 710533, 722261, 738541, 742813, 769757, 950797, 1064053, 1073021, 1109461, 1141141, 1357621, 1398101
Offset: 1

Views

Author

Jianing Song, Feb 06 2019

Keywords

Comments

All terms are composite because for odd primes p we always have 2^((p-1)/2) == (2/p) = A091337(p) (mod p).
Note that if k is odd and b^((k-1)/2) == -(b/k) (mod k), then taking Jacobi symbol modulo k (which depends only on the remainder modulo k) yields (b/k)^((k-1)/2) = -(b/k), or (b/k)^((k+1)/2) = -1. This implies that (k+1)/2 is odd, so k == 1 (mod 4). Moreover, if k > 1, then (b/k) = -1 (see the Math Stack Exchange link below), so b^((k-1)/2) == 1 (mod k). In particular, this sequence is equivalent to "numbers k == 5 (mod 8) such that 2^((k-1)/2) == 1 (mod k)". [Comment rewritten by Jianing Song, Sep 07 2024]
Also numbers k in A001567 and congruent to 5 modulo 8 such that k - 1 divided by the multiplicative order of 2 modulo k is an even number.
Euler pseudoprimes (A006970) that are not Euler-Jacobi pseudoprimes (A047713). - Amiram Eldar, Oct 28 2019

Examples

			341 is a term because (2/341) = -1, and 2^((341-1)/2) == 1 (mod 341).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+---------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+---------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | this seq | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+---------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA306310(k)=(k%8==5) && Mod(2, k)^((k-1)/2)==1
    
  • PARI
    isok(k) = (k>1) && (k%2) && (Mod(2, k)^((k-1)/2) == Mod(-kronecker(2, k), k)); \\ Michel Marcus, Feb 07 2019

A375490 Odd numbers k > 1 such that gcd(3,k) = 1 and 3^((k-1)/2) == -(3/k) (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 3 (A262051) that are not Euler-Jacobi pseudoprimes to base 3 (A048950).

Original entry on oeis.org

1541, 2465, 4961, 30857, 31697, 72041, 83333, 162401, 192713, 206981, 258017, 359369, 544541, 565001, 574397, 653333, 929633, 1018601, 1032533, 1133441, 1351601, 1373633, 1904033, 1953281, 2035661, 2797349, 2864501, 3264797, 3375041, 3554633, 3562361, 3636161
Offset: 1

Views

Author

Jianing Song, Sep 01 2024

Keywords

Comments

Note that if k is odd and b^((k-1)/2) == -(b/k) (mod k), then taking Jacobi symbol modulo k (which depends only on the remainder modulo k) yields (b/k)^((k-1)/2) = -(b/k), or (b/k)^((k+1)/2) = -1. This implies that (k+1)/2 is odd, so k == 1 (mod 4). Moreover, if k > 1, then (b/k) = -1 (see the Math Stack Exchange link below), so b^((k-1)/2) == 1 (mod k). In particular, this sequence is equivalent to "numbers k == 5 (mod 12) such that 3^((k-1)/2) == 1 (mod k)". [Comment rewritten by Jianing Song, Sep 07 2024]

Examples

			1541 is a term because (3/1541) = -1, and 3^((1541-1)/2) == 1 (mod 1541).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | this seq | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375490(k) = (k>1) && gcd(k,6)==1 && Mod(3,k)^((k-1)/2)==-kronecker(3,k)
    
  • PARI
    isA375490(k) = k%12==5 && Mod(3,k)^((k-1)/2)==1 \\ Jianing Song, Sep 07 2024

A375816 Odd numbers k > 1 such that gcd(5,k) = 1 and 5^((k-1)/2) == -(5/k) (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 5 (A262052) that are not Euler-Jacobi pseudoprimes to base 5 (A375914).

Original entry on oeis.org

217, 13333, 16297, 23653, 30673, 44173, 46657, 48133, 56033, 98173, 130417, 131977, 136137, 179893, 188113, 190513, 197633, 267977, 334153, 334657, 347777, 360533, 407353, 412933, 421637, 486157, 667153, 670033, 677917, 694153, 710533, 765073, 839833, 935137, 997633
Offset: 1

Views

Author

Jianing Song, Sep 01 2024

Keywords

Comments

Note that if k is odd and b^((k-1)/2) == -(b/k) (mod k), then taking Jacobi symbol modulo k (which depends only on the remainder modulo k) yields (b/k)^((k-1)/2) = -(b/k), or (b/k)^((k+1)/2) = -1. This implies that (k+1)/2 is odd, so k == 1 (mod 4). Moreover, if k > 1, then (b/k) = -1 (see the Math Stack Exchange link below), so b^((k-1)/2) == 1 (mod k). In particular, this sequence is equivalent to "numbers k == 13, 17 (mod 20) such that 5^((k-1)/2) == 1 (mod k)". [Comment rewritten by Jianing Song, Sep 07 2024]

Examples

			217 is a term because (5/217) = -1, and 5^((217-1)/2) == 1 (mod 217).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+---------+----------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | this seq |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375816(k) = (k>1) && gcd(k,10)==1 && Mod(5,k)^((k-1)/2)==-kronecker(5,k)
    
  • PARI
    isA375816(k) = (k%20==13 || k%20==17) && Mod(5,k)^((k-1)/2)==1

A375914 Base-5 Euler-Jacobi pseudoprimes: odd composite k coprime to 5 such that 5^((k-1)/2) == (5/k) (mod n), where (5/k) is the Jacobi symbol (or Kronecker symbol).

Original entry on oeis.org

781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 121463, 133141
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Examples

			781 is a term because 781 = 11*71 is composite, (5/781) = 1, and 5^((781-1)/2) == 1 (mod 781).
7813 is a term because 7813 = 13*601 is composite, (5/7813) = -1, and 5^((7813-1)/2) == -1 (mod 7813).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+---------+----------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | this seq |
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375914(k) = k>1 && !isprime(k) && gcd(k,10)==1 && Mod(5,k)^((k-1)/2)==kronecker(5,k)
Showing 1-10 of 20 results. Next