A047713
Euler-Jacobi pseudoprimes: 2^((n-1)/2) == (2 / n) mod n, where (2 / n) is a Jacobi symbol.
Original entry on oeis.org
561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 29341, 30121, 33153, 34945, 41041, 42799, 46657, 49141, 52633, 62745, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 90751, 104653
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, A12.
- H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes the subsequence A006971).
Terms in this sequence satisfying certain congruence:
A270698 (congruent to 1 mod 4),
A270697 (congruent to 3 mod 4),
A006971 (congruent to +-1 mod 8),
A244628 (congruent to 3 mod 8),
A244626 (congruent to 5 mod 8).
-
Select[ Range[ 3, 105000, 2 ], Mod[ 2^((# - 1)/2) - JacobiSymbol[ 2, # ], # ] == 0 && ! PrimeQ[ # ] & ]
-
is(n)=n%2 && Mod(2,n)^(n\2)==kronecker(2,n) && !isprime(n) \\ Charles R Greathouse IV, Dec 20 2013
A006971
Composite numbers k such that k == +-1 (mod 8) and 2^((k-1)/2) == 1 (mod k).
Original entry on oeis.org
561, 1105, 1729, 1905, 2047, 2465, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 30121, 33153, 34945, 41041, 42799, 46657, 52633, 62745, 65281, 74665, 75361, 85489, 87249, 90751, 113201, 115921, 126217, 129921, 130561, 149281, 158369
Offset: 1
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A12, pp. 44-50.
- Hans Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Select[Range[10^5], MemberQ[{1, 7}, Mod[#, 8]] && CompositeQ[#] && PowerMod[2, (# - 1)/2, #] == 1 &] (* Amiram Eldar, Nov 06 2023 *)
This sequence appeared as M5461 in Sloane-Plouffe (1995), but was later mistakenly declared to be an erroneous form of
A047713. Thanks to
Jianing Song for providing the correct definition. -
N. J. A. Sloane, Sep 17 2018
A048950
Base-3 Euler-Jacobi pseudoprimes.
Original entry on oeis.org
121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585, 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 44287, 46657, 47197, 49141, 50881, 52633, 55969, 63139, 63973, 74593, 75361, 79003, 82513
Offset: 1
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
(union of all three) | | | |
-
Select[Range[1, 10^5, 2], GCD[#, 3] == 1 && CompositeQ[#] && PowerMod[3, (# - 1)/2, #] == Mod[JacobiSymbol[3, #], #] &] (* Amiram Eldar, Jun 28 2019 *)
-
is(n) = n%2==1 && gcd(n,3)==1 && Mod(3, n)^((n-1)/2)==kronecker(3,n)
forcomposite(c=1, 83000, if(is(c), print1(c, ", "))) \\ Felix Fröhlich, Jul 15 2019
A306310
Odd numbers k > 1 such that 2^((k-1)/2) == -(2/k) = -A091337(k) (mod k), where (2/k) is the Jacobi (or Kronecker) symbol.
Original entry on oeis.org
341, 5461, 10261, 15709, 31621, 49981, 65077, 83333, 137149, 176149, 194221, 215749, 219781, 276013, 282133, 534061, 587861, 611701, 653333, 657901, 665333, 688213, 710533, 722261, 738541, 742813, 769757, 950797, 1064053, 1073021, 1109461, 1141141, 1357621, 1398101
Offset: 1
341 is a term because (2/341) = -1, and 2^((341-1)/2) == 1 (mod 341).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+---------+
-----------------------------------+-------------------+---------+---------+
-----------------------------------+-------------------+---------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+---------+
(union of all three) | | | |
-
isA306310(k)=(k%8==5) && Mod(2, k)^((k-1)/2)==1
-
isok(k) = (k>1) && (k%2) && (Mod(2, k)^((k-1)/2) == Mod(-kronecker(2, k), k)); \\ Michel Marcus, Feb 07 2019
A375490
Odd numbers k > 1 such that gcd(3,k) = 1 and 3^((k-1)/2) == -(3/k) (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 3 (A262051) that are not Euler-Jacobi pseudoprimes to base 3 (A048950).
Original entry on oeis.org
1541, 2465, 4961, 30857, 31697, 72041, 83333, 162401, 192713, 206981, 258017, 359369, 544541, 565001, 574397, 653333, 929633, 1018601, 1032533, 1133441, 1351601, 1373633, 1904033, 1953281, 2035661, 2797349, 2864501, 3264797, 3375041, 3554633, 3562361, 3636161
Offset: 1
1541 is a term because (3/1541) = -1, and 3^((1541-1)/2) == 1 (mod 1541).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
(union of all three) | | | |
-
isA375490(k) = (k>1) && gcd(k,6)==1 && Mod(3,k)^((k-1)/2)==-kronecker(3,k)
-
isA375490(k) = k%12==5 && Mod(3,k)^((k-1)/2)==1 \\ Jianing Song, Sep 07 2024
A375816
Odd numbers k > 1 such that gcd(5,k) = 1 and 5^((k-1)/2) == -(5/k) (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 5 (A262052) that are not Euler-Jacobi pseudoprimes to base 5 (A375914).
Original entry on oeis.org
217, 13333, 16297, 23653, 30673, 44173, 46657, 48133, 56033, 98173, 130417, 131977, 136137, 179893, 188113, 190513, 197633, 267977, 334153, 334657, 347777, 360533, 407353, 412933, 421637, 486157, 667153, 670033, 677917, 694153, 710533, 765073, 839833, 935137, 997633
Offset: 1
217 is a term because (5/217) = -1, and 5^((217-1)/2) == 1 (mod 217).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
-
isA375816(k) = (k>1) && gcd(k,10)==1 && Mod(5,k)^((k-1)/2)==-kronecker(5,k)
-
isA375816(k) = (k%20==13 || k%20==17) && Mod(5,k)^((k-1)/2)==1
A375914
Base-5 Euler-Jacobi pseudoprimes: odd composite k coprime to 5 such that 5^((k-1)/2) == (5/k) (mod n), where (5/k) is the Jacobi symbol (or Kronecker symbol).
Original entry on oeis.org
781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 121463, 133141
Offset: 1
781 is a term because 781 = 11*71 is composite, (5/781) = 1, and 5^((781-1)/2) == 1 (mod 781).
7813 is a term because 7813 = 13*601 is composite, (5/7813) = -1, and 5^((7813-1)/2) == -1 (mod 7813).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
A375915
Composite numbers k == 1, 9 (mod 10) such that 5^((k-1)/2) == 1 (mod k).
Original entry on oeis.org
781, 1541, 1729, 5461, 5611, 6601, 7449, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 133141, 135201, 141361
Offset: 1
29539 is a term because 29539 = 109*271 is composite, 29539 == 9 (mod 10), and 5^((29539-1)/2) == 1 (mod 29539).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
A375916
Composite numbers k == 3, 7 (mod 10) such that 5^((k-1)/2) == -1 (mod k).
Original entry on oeis.org
7813, 121463, 195313, 216457, 315283, 319507, 353827, 555397, 559903, 753667, 939727, 1164083, 1653667, 1663213, 1703677, 1809697, 1958503, 2255843, 2339377, 2423323, 2942333, 2987167, 3313643, 4265257, 4635053, 5376463, 5979247, 6611977, 7784297, 7859707
Offset: 1
216457 is a term because 216457 = 233*929 is a composite, 216457 == 7 (mod 10), and 5^((216457-1)/2) == -1 (mod 216457).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
A375917
Composite numbers k == 1, 11 (mod 12) such that 3^((k-1)/2) == 1 (mod k).
Original entry on oeis.org
121, 1729, 2821, 7381, 8401, 10585, 15457, 15841, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 46657, 47197, 49141, 50881, 52633, 55969, 63973, 74593, 75361, 82513, 87913, 88573, 93961, 111361, 112141, 115921, 125665, 126217, 138481, 148417, 172081
Offset: 1
1683683 is a term because 1683683 = 59*28537 is composite, 1683683 == 11 (mod 12), and 3^((1683683-1)/2) == 1 (mod 1683683).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
(union of all three) | | | |
Showing 1-10 of 21 results.
Comments