cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A375490 Odd numbers k > 1 such that gcd(3,k) = 1 and 3^((k-1)/2) == -(3/k) (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 3 (A262051) that are not Euler-Jacobi pseudoprimes to base 3 (A048950).

Original entry on oeis.org

1541, 2465, 4961, 30857, 31697, 72041, 83333, 162401, 192713, 206981, 258017, 359369, 544541, 565001, 574397, 653333, 929633, 1018601, 1032533, 1133441, 1351601, 1373633, 1904033, 1953281, 2035661, 2797349, 2864501, 3264797, 3375041, 3554633, 3562361, 3636161
Offset: 1

Views

Author

Jianing Song, Sep 01 2024

Keywords

Comments

Note that if k is odd and b^((k-1)/2) == -(b/k) (mod k), then taking Jacobi symbol modulo k (which depends only on the remainder modulo k) yields (b/k)^((k-1)/2) = -(b/k), or (b/k)^((k+1)/2) = -1. This implies that (k+1)/2 is odd, so k == 1 (mod 4). Moreover, if k > 1, then (b/k) = -1 (see the Math Stack Exchange link below), so b^((k-1)/2) == 1 (mod k). In particular, this sequence is equivalent to "numbers k == 5 (mod 12) such that 3^((k-1)/2) == 1 (mod k)". [Comment rewritten by Jianing Song, Sep 07 2024]

Examples

			1541 is a term because (3/1541) = -1, and 3^((1541-1)/2) == 1 (mod 1541).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | this seq | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375490(k) = (k>1) && gcd(k,6)==1 && Mod(3,k)^((k-1)/2)==-kronecker(3,k)
    
  • PARI
    isA375490(k) = k%12==5 && Mod(3,k)^((k-1)/2)==1 \\ Jianing Song, Sep 07 2024

A047713 Euler-Jacobi pseudoprimes: 2^((n-1)/2) == (2 / n) mod n, where (2 / n) is a Jacobi symbol.

Original entry on oeis.org

561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 29341, 30121, 33153, 34945, 41041, 42799, 46657, 49141, 52633, 62745, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 90751, 104653
Offset: 1

Views

Author

Keywords

Comments

Odd composite numbers n such that 2^((n-1)/2) == (-1)^((n^2-1)/8) mod n. - Thomas Ordowski, Dec 21 2013
Most terms are congruent to 1 mod 8 (cf. A006971). Among the first 1000 terms, the number of terms congruent to 1, 3, 5 and 7 mod 8 are 764, 47, 125 and 64, respectively. - Jianing Song, Sep 05 2018

References

  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes the subsequence A006971).

Crossrefs

Terms in this sequence satisfying certain congruence: A270698 (congruent to 1 mod 4), A270697 (congruent to 3 mod 4), A006971 (congruent to +-1 mod 8), A244628 (congruent to 3 mod 8), A244626 (congruent to 5 mod 8).

Programs

  • Mathematica
    Select[ Range[ 3, 105000, 2 ], Mod[ 2^((# - 1)/2) - JacobiSymbol[ 2, # ], # ] == 0 && ! PrimeQ[ # ] & ]
  • PARI
    is(n)=n%2 && Mod(2,n)^(n\2)==kronecker(2,n) && !isprime(n) \\ Charles R Greathouse IV, Dec 20 2013

Extensions

Corrected by Eric W. Weisstein; more terms from David W. Wilson

A306310 Odd numbers k > 1 such that 2^((k-1)/2) == -(2/k) = -A091337(k) (mod k), where (2/k) is the Jacobi (or Kronecker) symbol.

Original entry on oeis.org

341, 5461, 10261, 15709, 31621, 49981, 65077, 83333, 137149, 176149, 194221, 215749, 219781, 276013, 282133, 534061, 587861, 611701, 653333, 657901, 665333, 688213, 710533, 722261, 738541, 742813, 769757, 950797, 1064053, 1073021, 1109461, 1141141, 1357621, 1398101
Offset: 1

Views

Author

Jianing Song, Feb 06 2019

Keywords

Comments

All terms are composite because for odd primes p we always have 2^((p-1)/2) == (2/p) = A091337(p) (mod p).
Note that if k is odd and b^((k-1)/2) == -(b/k) (mod k), then taking Jacobi symbol modulo k (which depends only on the remainder modulo k) yields (b/k)^((k-1)/2) = -(b/k), or (b/k)^((k+1)/2) = -1. This implies that (k+1)/2 is odd, so k == 1 (mod 4). Moreover, if k > 1, then (b/k) = -1 (see the Math Stack Exchange link below), so b^((k-1)/2) == 1 (mod k). In particular, this sequence is equivalent to "numbers k == 5 (mod 8) such that 2^((k-1)/2) == 1 (mod k)". [Comment rewritten by Jianing Song, Sep 07 2024]
Also numbers k in A001567 and congruent to 5 modulo 8 such that k - 1 divided by the multiplicative order of 2 modulo k is an even number.
Euler pseudoprimes (A006970) that are not Euler-Jacobi pseudoprimes (A047713). - Amiram Eldar, Oct 28 2019

Examples

			341 is a term because (2/341) = -1, and 2^((341-1)/2) == 1 (mod 341).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+---------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+---------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | this seq | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+---------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA306310(k)=(k%8==5) && Mod(2, k)^((k-1)/2)==1
    
  • PARI
    isok(k) = (k>1) && (k%2) && (Mod(2, k)^((k-1)/2) == Mod(-kronecker(2, k), k)); \\ Michel Marcus, Feb 07 2019

A375816 Odd numbers k > 1 such that gcd(5,k) = 1 and 5^((k-1)/2) == -(5/k) (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 5 (A262052) that are not Euler-Jacobi pseudoprimes to base 5 (A375914).

Original entry on oeis.org

217, 13333, 16297, 23653, 30673, 44173, 46657, 48133, 56033, 98173, 130417, 131977, 136137, 179893, 188113, 190513, 197633, 267977, 334153, 334657, 347777, 360533, 407353, 412933, 421637, 486157, 667153, 670033, 677917, 694153, 710533, 765073, 839833, 935137, 997633
Offset: 1

Views

Author

Jianing Song, Sep 01 2024

Keywords

Comments

Note that if k is odd and b^((k-1)/2) == -(b/k) (mod k), then taking Jacobi symbol modulo k (which depends only on the remainder modulo k) yields (b/k)^((k-1)/2) = -(b/k), or (b/k)^((k+1)/2) = -1. This implies that (k+1)/2 is odd, so k == 1 (mod 4). Moreover, if k > 1, then (b/k) = -1 (see the Math Stack Exchange link below), so b^((k-1)/2) == 1 (mod k). In particular, this sequence is equivalent to "numbers k == 13, 17 (mod 20) such that 5^((k-1)/2) == 1 (mod k)". [Comment rewritten by Jianing Song, Sep 07 2024]

Examples

			217 is a term because (5/217) = -1, and 5^((217-1)/2) == 1 (mod 217).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+---------+----------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | this seq |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375816(k) = (k>1) && gcd(k,10)==1 && Mod(5,k)^((k-1)/2)==-kronecker(5,k)
    
  • PARI
    isA375816(k) = (k%20==13 || k%20==17) && Mod(5,k)^((k-1)/2)==1

A375914 Base-5 Euler-Jacobi pseudoprimes: odd composite k coprime to 5 such that 5^((k-1)/2) == (5/k) (mod n), where (5/k) is the Jacobi symbol (or Kronecker symbol).

Original entry on oeis.org

781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 121463, 133141
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Examples

			781 is a term because 781 = 11*71 is composite, (5/781) = 1, and 5^((781-1)/2) == 1 (mod 781).
7813 is a term because 7813 = 13*601 is composite, (5/7813) = -1, and 5^((7813-1)/2) == -1 (mod 7813).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+---------+----------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | this seq |
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375914(k) = k>1 && !isprime(k) && gcd(k,10)==1 && Mod(5,k)^((k-1)/2)==kronecker(5,k)

A375915 Composite numbers k == 1, 9 (mod 10) such that 5^((k-1)/2) == 1 (mod k).

Original entry on oeis.org

781, 1541, 1729, 5461, 5611, 6601, 7449, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 133141, 135201, 141361
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 5^((k-1)/2) == (5/k) = 1 (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			29539 is a term because 29539 = 109*271 is composite, 29539 == 9 (mod 10), and 5^((29539-1)/2) == 1 (mod 29539).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | this seq |
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+---------+----------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375915(k) = (k>1) && !isprime(k) && (k%10==1 || k%10==9) && Mod(5,k)^((k-1)/2) == 1

A375916 Composite numbers k == 3, 7 (mod 10) such that 5^((k-1)/2) == -1 (mod k).

Original entry on oeis.org

7813, 121463, 195313, 216457, 315283, 319507, 353827, 555397, 559903, 753667, 939727, 1164083, 1653667, 1663213, 1703677, 1809697, 1958503, 2255843, 2339377, 2423323, 2942333, 2987167, 3313643, 4265257, 4635053, 5376463, 5979247, 6611977, 7784297, 7859707
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 5^((k-1)/2) == (5/k) = -1 (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			216457 is a term because 216457 = 233*929 is a composite, 216457 == 7 (mod 10), and 5^((216457-1)/2) == -1 (mod 216457).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | this seq |
-----------------------------------+-------------------+---------+----------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375916(k) = !isprime(k) && (k%10==3 || k%10==7) && Mod(5,k)^((k-1)/2) == -1

A375917 Composite numbers k == 1, 11 (mod 12) such that 3^((k-1)/2) == 1 (mod k).

Original entry on oeis.org

121, 1729, 2821, 7381, 8401, 10585, 15457, 15841, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 46657, 47197, 49141, 50881, 52633, 55969, 63973, 74593, 75361, 82513, 87913, 88573, 93961, 111361, 112141, 115921, 125665, 126217, 138481, 148417, 172081
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 3^((k-1)/2) == (3/k) = 1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).
It seems that most terms are congruent to 1 modulo 12. The first terms congruent to 11 modulo 12 are 1683683, 1898999, 2586083, 2795519, 4042403, 4099439, 5087171, 8243111, ...

Examples

			1683683 is a term because 1683683 = 59*28537 is composite, 1683683 == 11 (mod 12), and 3^((1683683-1)/2) == 1 (mod 1683683).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | this seq | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375917(k) = (k>1) && !isprime(k) && (k%12==1 || k%12==11) && Mod(3,k)^((k-1)/2) == 1

A375918 Composite numbers k == 5, 7 (mod 12) such that 3^((k-1)/2) == -1 (mod k).

Original entry on oeis.org

703, 1891, 3281, 8911, 12403, 16531, 44287, 63139, 79003, 97567, 105163, 152551, 182527, 188191, 211411, 218791, 288163, 313447, 320167, 364231, 385003, 432821, 453259, 497503, 563347, 638731, 655051, 658711, 801139, 859951, 867043, 973241, 994507, 1024651, 1097227
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 3^((k-1)/2) == (3/k) = -1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | this seq | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3,k)^((k-1)/2) == -1

A326614 Smallest Euler-Jacobi pseudoprime to base n.

Original entry on oeis.org

9, 561, 121, 341, 781, 217, 25, 9, 91, 9, 133, 91, 85, 15, 1687, 15, 9, 25, 9, 21, 221, 21, 169, 25, 217, 9, 121, 9, 15, 49, 15, 25, 545, 33, 9, 35, 9, 39, 133, 39, 21, 451, 21, 9, 481, 9, 65, 49, 25, 49, 25, 51, 9, 55, 9, 55, 25, 57, 15, 481, 15, 9, 529, 9, 33, 65, 33, 25, 35, 69, 9
Offset: 1

Views

Author

Richard N. Smith, Jul 14 2019

Keywords

Comments

a(n) = 9 for n == 1 or 8 mod 9 (see A056020).

Crossrefs

Cf. A047713, A048950, A090086 (least Fermat pseudoprime to base n), A298756 (least strong pseudoprime to base n).

Programs

  • Mathematica
    ejpspQ[n_,b_] := CoprimeQ[n,b] && CompositeQ[n] && Mod[b^((n - 1)/2) - JacobiSymbol[b, n], n] == 0; leastEJpsp[b_] := Module[{k=9}, While[!ejpspQ[k, b], k+=2]; k]; Array[leastEJpsp, 100] (* Amiram Eldar, Jul 15 2019 *)
  • PARI
    isok(k, n) = ((k%2==1) && (gcd(k, n)==1) && Mod(n, k)^((k-1)/2)==kronecker(n, k) && !isprime(k));
    a(n) = my(k=2); while (! isok(k, n), k++); k; \\ Michel Marcus, Jul 15 2019
Showing 1-10 of 11 results. Next