cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A277580 Numbers that are both Smith (A006753) and Lucas-Carmichael (A006972).

Original entry on oeis.org

8164079, 8421335, 21408695, 30071327, 47324639, 77350559, 103727519, 121538879, 134151479, 202767551, 239875559, 287432495, 306871487, 466861199, 560974259, 566019167, 574342145, 592557119, 594633599, 602758079, 677913599, 832477799
Offset: 1

Views

Author

Max Alekseyev, Oct 21 2016

Keywords

Crossrefs

Intersection of A006753 and A006972.

A208728 Composite numbers n such that b^(n+1) == 1 (mod n) for every b coprime to n.

Original entry on oeis.org

15, 35, 255, 455, 1295, 2703, 4355, 6479, 9215, 10439, 11951, 16211, 23435, 27839, 44099, 47519, 47879, 62567, 63167, 65535, 93023, 94535, 104195, 120959, 131327, 133055, 141155, 142883, 157079, 170819, 196811, 207935, 260831, 283679, 430199, 560735, 576719
Offset: 1

Views

Author

Paolo P. Lava, Mar 01 2012

Keywords

Comments

GCD(b,n)=1 and b^(n+1) == 1 (mod n).
The sequence lists the squarefree composite numbers n such that every prime divisor p of n satisfies (p-1)|(n+1) (similar to Korselt's criterion).
The sequence can be considered as an extension of k-Knödel numbers to k negative, in this case equal to -1.
Numbers n > 3 such that b^(n+2) == b (mod n) for every integer b. Also, numbers n > 3 such that A002322(n) divides n+1. Are there infinitely many such numbers? It seems that such numbers n > 35 have at least three prime factors. - Thomas Ordowski, Jun 25 2017
Proof that 15 and 35 are the only numbers with only two prime factors (and so all others have >= 3): Since n is squarefree and composite, it has at least two prime factors, p and q. If these are the only two, n = p*q. Then the criterion is that (p-1)|(n+1) -> (p-1)|pq+1, and q-1|pq+1. Write pq+1 = j*(p-1) = k*(q-1). Rearranging, p*(j-q)=j+1 and q*(k-p)=k+1. Since j = (pq+1)/(p-1), for large n, j~=q, and k~=p. But we see that p divides j+1~=q, and q divides k+1~=p. For large n this is only possible if p and q are roughly equal, so j-q=k-p=1. Otherwise, we have j+1 >= 2*p and k+1 >= 2*q, and which puts upper bounds on p and q. Enumerating these gives (p,q)=(3,5) and (p,q)=(5,7) as the only solutions. - Alex Meiburg, Oct 03 2024

Examples

			6479 is part of the sequence because its prime factors are 11, 19 and 31: (6479+1)/(11-1)=648, (6479+1)/(19-1)=360 and (6479+1)/(31-1)=216.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local d, ok, p;
    if issqrfree(n) then p:=factorset(n); ok:=1;
    for d from 1 to nops(p) do if frac((n+1)/(p[d]-1))>0 then ok:=0;
    break; fi; od; if ok=1 then n; fi; fi; end: seq(P(i),i=5..576719);
  • Mathematica
    Select[Range[2, 576719], SquareFreeQ[#] && ! PrimeQ[#] && Union[Mod[# + 1, Transpose[FactorInteger[#]][[1]] - 1]] == {0} &] (* T. D. Noe, Mar 05 2012 *)
  • PARI
    is(n)=if(isprime(n)||!issquarefree(n)||n<3, return(0)); my(f=factor(n)[, 1]); for(i=1, #f, if((n+1)%(f[i]-1), return(0))); 1 \\ Charles R Greathouse IV, Mar 05 2012

Extensions

Definition corrected by Thomas Ordowski, Jun 25 2017

A257750 Quasi-Carmichael numbers.

Original entry on oeis.org

35, 77, 143, 165, 187, 209, 221, 231, 247, 273, 299, 323, 357, 391, 399, 437, 493, 527, 561, 589, 598, 713, 715, 899, 935, 943, 989, 1015, 1073, 1105, 1147, 1189, 1247, 1271, 1295, 1333, 1517, 1537, 1547, 1591, 1595, 1705, 1729, 1739, 1763, 1829, 1885, 1886, 1927
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 07 2015

Keywords

Comments

Quasi-Carmichael numbers are squarefree composites n with the property that for every prime factor p of n, p+b divides n+b positively with b being any integer besides 0.
If b is negative, then it is always larger than 0 minus the square root of the corresponding Quasi-Carmichael number. But if b is positive, how large can it be in relation to its corresponding Quasi-Carmichael number? Conjecture: It is always smaller than the square root of the corresponding Quasi-Carmichael number.
Are 1885 and 1886 the only two consecutive integers such that both numbers are Quasi-Carmichael numbers?
From Robert G. Wilson v, Dec 05 2015: (Start)
The conjecture that b < sqrt(n) is false. Look at n = 87061 = 13*37*181, 87365 = 5*101*173, and 96473 = 13*41*181. Their b values are 299, 331, and 351, while the corresponding sqrt(n) values are 295, 295, and 310, respectively.
For b to result in (n+b)/(p+b) > 0 with n = P_1*p_2*...*p_i and P_1 < p_2 < ... < p_i, -p_1 < b < |(n-p_i^2)/p_i|. (n+b)/(p+b) >= b+1. Solve for b.
Less than 0.5% are even (A262252). Of course they are == 2 (mod 4).
Least k-almost prime quasi-Carmichael number with k>1: 35, 165, 6545, 179998, 7509579, ..., .
(End)

Examples

			a(1) = 35 because this is the first squarefree composite number n such that at least one integer b except 0 exists such that for every prime factor p of n applies that p+b divides n+b (-3): 35 = 5*7 and 2, 4 both divide 32.
		

Crossrefs

Subsequences: A002997 (Carmichael numbers), A006972 (Lucas-Carmichael numbers), A029553 (-10), A029554 (-9), A029555 (-8), A029556 (-7), A029557 (-6), A029558 (-5), A029559 (-4), A029560 (-3), A029561 (-2), A029562 (+2), A029563 (+3), A029564 (+4), A029565 (+5), A029566 (+6), A029567 (+7), A029568 (+8), A029569 (+9), A029570 (+10), A029590 (Least quasi-Carmichael number of order n), A029591 (Least quasi-Carmichael number of order -n), A257751 (1 base), A257752 (2 bases), A257753 (3 bases), A257754 (4 bases), A257755 (5 bases), A257756 (6 bases), A257757 (7 bases), A258842 (8 bases), A257758 (first occurrences), A259282 (at least one negative base), A259283 (at least one positive base), A257759 (at least one negative base and at least one positive base).

Programs

  • Mathematica
    fQ[n_] := Block[{c = -1, fi = FactorInteger@ n, k, lmt, p}, If[Times @@ (Last@# & /@ fi) == 1 < Plus @@ (Last@# & /@ fi), p = First@# & /@ fi; k = -fi[[1, 1]] + 1; lmt = Abs[(n - fi[[-1, 1]]^2)/fi[[-1, 1]]]; While[k < lmt, If[ Union[ IntegerQ@# & /@ ((n + k)/(p + k))] == {True}, c++; If[c > 0, Goto [fini]]]; k++]]; Label[fini]; c > 0]; Select[ Range@ 2000, fQ] (* Robert G. Wilson v, Dec 05 2015 *)
  • PARI
    for(n=2,1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1),n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k>0, print1(n,", ")))))

Extensions

All terms less than 1000000 checked by Robert G. Wilson v, Dec 13 2015

A216925 Lucas-Carmichael numbers with 3 prime factors.

Original entry on oeis.org

399, 935, 2015, 2915, 4991, 5719, 7055, 12719, 20705, 20999, 22847, 46079, 60059, 63503, 67199, 76751, 80189, 88559, 90287, 104663, 120581, 152279, 155819, 196559, 214199, 230159, 388079, 482143, 663679, 676799, 709019, 741311, 761039, 776567, 880319, 966239
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 20 2012

Keywords

Examples

			a(1) = 399 = 3*7*19
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216926, A216927, A217002, A217003, A217091.

A067256 Numbers n such that n, 2n+1, 3n+2 are primes.

Original entry on oeis.org

3, 5, 23, 29, 83, 89, 173, 233, 239, 293, 419, 659, 953, 1013, 1223, 1409, 1559, 1583, 1889, 2003, 2129, 2339, 2549, 2693, 2939, 3359, 3389, 3593, 3803, 4349, 4373, 4409, 4919, 4943, 5333, 6113, 6173, 8093, 8273, 8513, 9059, 9479, 9539, 10163, 10313
Offset: 1

Views

Author

Benoit Cloitre, Feb 20 2002

Keywords

Comments

a(n)*(2a(n)+1)*(3a(n)+2) are Lucas-Carmichael numbers for n > 1. Analogous to A174734 as A006972 (Lucas-Carmichael numbers) is analogous to A002997 (Carmichael numbers). - Amiram Eldar, Aug 11 2017

Crossrefs

Programs

A216926 Lucas-Carmichael numbers with 4 prime factors.

Original entry on oeis.org

8855, 18095, 29315, 31535, 51359, 73535, 81719, 117215, 147455, 162687, 191807, 194327, 218735, 265895, 357599, 390335, 653939, 760655, 798215, 895679, 913031, 1017359, 1097459, 1256759, 1554119, 1659119, 1707839, 1710863, 1901735, 1915199, 2048255, 2055095
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 20 2012

Keywords

Examples

			a(1) = 8855 = 5*7*11*23
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216927, A217002, A217003, A217091.

A216927 Lucas-Carmichael numbers with 5 prime factors.

Original entry on oeis.org

588455, 1010735, 2276351, 2756159, 4107455, 4874639, 5669279, 6539819, 8421335, 13670855, 16184663, 16868159, 21408695, 23176439, 24685199, 25111295, 26636687, 30071327, 34347599, 34541639, 36149399, 36485015, 38999519, 39715319, 42624911, 43134959, 49412285
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 20 2012

Keywords

Examples

			a(1) = 588455 = 5*7*17*23*43
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A217002, A217003, A217091.

A217002 Lucas-Carmichael numbers with 6 prime factors.

Original entry on oeis.org

139501439, 196377335, 206238815, 239875559, 287432495, 336545495, 353107799, 381626399, 394426655, 406335215, 461829599, 464972255, 577901519, 592557119, 649351295, 653067359, 674628479, 761212655, 775931519, 777724415, 929892095, 993625919, 1073352959
Offset: 1

Views

Author

Donovan Johnson, Sep 22 2012

Keywords

Examples

			A006972(385) = 139501439 = 7*11*17*19*71*79.
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217003, A217091.

Programs

  • PARI
    upto(n, k=6) = my(A=vecprod(primes(k+1))\2, B=n); (f(m, l, p, k, u=0, v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), forprime(q = p, sqrtnint(B\m, k), my(t = m*q); my(L=lcm(l, q+1)); if(gcd(L, t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ Daniel Suteu, Sep 03 2022

A217003 Lucas-Carmichael numbers with 7 prime factors.

Original entry on oeis.org

3512071871, 10470856319, 11956093919, 12283814015, 13150303199, 15128703359, 15966728855, 18063158399, 21887083295, 22572006479, 23388059519, 23836221695, 23940514367, 25231063319, 25638464159, 27742047839, 28160966735, 30070781279, 31251542399, 35160944399
Offset: 1

Views

Author

Donovan Johnson, Sep 22 2012

Keywords

Examples

			A006972(1249) = 3512071871 = 7*11*17*23*31*53*71.
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217002, A217091.

Programs

  • PARI
    upto(n, k=7) = my(A=vecprod(primes(k+1))\2, B=n); (f(m, l, p, k, u=0, v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), forprime(q = p, sqrtnint(B\m, k), my(t = m*q); my(L=lcm(l, q+1)); if(gcd(L, t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ Daniel Suteu, Aug 30 2022

A217091 Lucas-Carmichael numbers with 8 prime factors.

Original entry on oeis.org

199195047359, 220323712895, 259305479279, 325451502935, 472765412735, 491091874559, 498357905759, 517270926095, 609349053599, 769658803199, 832015353455, 853833772799, 898951575599, 962940227039, 1087044101759, 1122857491679, 1249765950719, 1297923596255
Offset: 1

Views

Author

Donovan Johnson, Sep 26 2012

Keywords

Examples

			A006972(5453) = 199195047359 = 7*11*17*19*23*31*47*239.
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217002, A217003.

Programs

  • PARI
    upto(n, k=8) = my(A = vecprod(primes(k)), B=n); (f(m,l,p,k,u=0,v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), my(s = sqrtnint(B\m, k)); forprime(q = p, s, my(t = m*q); my(L=lcm(l,q+1)); if(gcd(L,t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ Daniel Suteu, Aug 29 2022
Showing 1-10 of 47 results. Next