cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A067257 Numbers n such that n, 2n+1, 3n+2, 4n+3 are primes.

Original entry on oeis.org

5, 89, 1409, 1889, 10589, 11549, 11909, 12899, 17159, 19889, 22349, 24239, 26189, 35999, 37049, 37379, 39419, 44879, 45569, 49919, 60779, 67559, 68669, 75329, 83579, 88919, 104369, 108359, 112349, 114599, 127139, 133979, 135029, 135449
Offset: 1

Views

Author

Benoit Cloitre, Feb 20 2002

Keywords

Comments

Terms are congruent to {5,29} mod 30. - Zak Seidov, May 31 2012

Crossrefs

Programs

  • Magma
    [n: n in [1..150000] | IsPrime(n) and IsPrime(2*n+1) and IsPrime(3*n+2) and IsPrime(4*n+3)]; // Vincenzo Librandi, Oct 31 2014
  • Mathematica
    Select[Prime[Range[10^5]],PrimeQ[2*#+1]&&PrimeQ[3*#+2]&&PrimeQ[4*#+3] &] (* Vladimir Joseph Stephan Orlovsky, Apr 27 2008 *)

Extensions

Extended by Ray Chandler, Dec 31 2004

A067258 Numbers n such that n, 2n+1, 3n+2, 4n+3, 5n+4 are primes.

Original entry on oeis.org

5, 89, 12899, 35999, 45569, 83579, 108359, 154769, 175349, 196769, 206009, 209039, 303029, 374009, 420419, 489179, 513239, 641549, 658349, 709589, 765749, 775949, 862769, 991079, 1018709, 1057019, 1265549, 1527629, 1609739, 1621079
Offset: 1

Views

Author

Benoit Cloitre, Feb 20 2002

Keywords

Comments

Except for 5, all terms == 29 (mod 30). - Robert Israel, May 28 2018

Crossrefs

Programs

  • Maple
    select(t -> andmap(isprime, [t,2*t+1,3*t+2,4*t+3,5*t+4]),
    [5, seq(i,i=29..2*10^6,30)]); # Robert Israel, May 28 2018
  • Mathematica
    a={};Do[p=Prime[n];If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4],AppendTo[a,p]],{n,1,10^5}];Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)

Extensions

More terms from Sascha Kurz, Mar 23 2002

A101767 Numbers n such that n, 2n+1, 3n+2, 4n+3, 5n+4, 6n+5 are primes.

Original entry on oeis.org

154769, 175349, 641549, 658349, 1018709, 2274089, 2894219, 5246009, 6621929, 7949759, 8189999, 8678669, 10366439, 12327629, 13951559, 18160379, 18924569, 21914339, 22279949, 22297799, 24765509, 25592279, 31029389, 31835159, 36802079, 38844119, 38911949
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

a(n) == 209 (mod 210) - John Cerkan, Mar 22 2018

Crossrefs

Programs

  • Mathematica
    a={}; Do[p=Prime[n]; If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4]&&PrimeQ[p*6+5], AppendTo[a, p]], {n, 1, 10^5}]; Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)

Extensions

Terms a(25) and beyond from John Cerkan, Mar 22 2018

A101770 Numbers n such that n, 2n+1, 3n+2, 4n+3, 5n+4, 6n+5, 7n+6, 8n+7, 9n+8 are primes.

Original entry on oeis.org

407874179, 1674689729, 6380217479, 15002412599, 24291715139, 28081637219, 34274541839, 37048322849, 45785202539, 53434060679, 100061694809, 101245430999, 103024911989, 127890675989, 130173995279, 141481942139, 149397940019, 177352532069, 212815427999, 214580145779, 294249502259, 296754699779
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

All terms == 2099 or 2309 (mod 2310). - Robert Israel, Jul 05 2016

Crossrefs

Programs

  • Maple
    select(n -> andmap(isprime,
    [n,2*n+1,3*n+2,4*n+3,5*n+4,6*n+5,7*n+6,8*n+7,9*n+8]),
    [seq(seq(2310*i+j, j=[2099,2309]),i=0..10^7)]); # Robert Israel, Jul 05 2016

Extensions

More terms from Jens Kruse Andersen, May 08 2008

A101769 Numbers p such that p, 2p+1, 3p+2, 4p+3, 5p+4, 6p+5, 7p+6, 8p+7 are primes.

Original entry on oeis.org

2894219, 60041519, 64523969, 242024369, 407874179, 1092040949, 1092075389, 1674689729, 2281060319, 5035134509, 5329406669, 5683382879, 5792424329, 6000216809, 6380217479, 10409580719, 11488703939, 13745865209, 14181824369, 14904963149, 15002412599, 15412603919
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

From Jeppe Stig Nielsen, Jul 07 2020: (Start)
Each term is -1 modulo 210.
The subset p, 2p+1, 4p+3, 8p+7 is a Cunningham chain, cf. A023272. (End)

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for i from 0 while count < 50 do
      for j in [1049,2099, 2309] do
        p:= 2310*i+j;
        if andmap(isprime,[p, 2*p + 1, 3*p + 2, 4*p + 3, 5*p + 4, 6*p + 5, 7*p + 6, 8*p + 7]) then
          count:= count+1; R:= R,p;
        fi
    od od:
    R; # Robert Israel, May 21 2025
  • Mathematica
    a={}; Do[p=Prime[n]; If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4]&&PrimeQ[p*6+5]&&PrimeQ[p*7+6]&&PrimeQ[p*8+7], AppendTo[a, p]], {n, 1, 10^7}]; Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)

Extensions

a(20)-a(22) from Jeppe Stig Nielsen, Jul 07 2020

A101768 Numbers k such that k, 2*k+1, 3*k+2, 4*k+3, 5*k+4, 6*k+5, 7*k+6 are primes.

Original entry on oeis.org

2894219, 5246009, 8189999, 8678669, 13951559, 18160379, 24765509, 38911949, 40645919, 60041519, 64523969, 108405989, 124028309, 126392699, 132767039, 142738679, 189142589, 242024369, 248451839, 325561319, 354218759, 392136359
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a={}; Do[p=Prime[n]; If[PrimeQ[p*2+1] && PrimeQ[p*3+2] && PrimeQ[p*4+3] && PrimeQ[p*5+4] && PrimeQ[p*6+5] && PrimeQ[p*7+6], AppendTo[a, p]], {n, 1, 17^5}]; a (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    Select[Range[4*10^8], And@@PrimeQ[#*Range[7]+Range[0,6]]&] (* Harvey P. Dale, Jul 22 2011 *)

A033594 a(n) = (n-1)*(2*n-1)*(3*n-1).

Original entry on oeis.org

-1, 0, 15, 80, 231, 504, 935, 1560, 2415, 3536, 4959, 6720, 8855, 11400, 14391, 17864, 21855, 26400, 31535, 37296, 43719, 50840, 58695, 67320, 76751, 87024, 98175, 110240, 123255, 137256, 152279, 168360
Offset: 0

Views

Author

Keywords

Comments

The sequence of n such that n is prime and (2*n+1) is prime is the sequence of Sophie Germain primes A005384 and the subsequence of those for which in addition (3*n+2) is prime is A067256. - Jonathan Vos Post, Dec 15 2004

Crossrefs

Programs

Formula

a(n)*A016921(n) + 1 = A051866(n)^2. - Bruno Berselli, May 23 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=-1, a(1)=0, a(2)=15, a(3)=80. - Harvey P. Dale, Aug 23 2012
G.f.: (-1 +4*x +9*x^2 +24*x^3)/(1-x)^4. - R. J. Mathar, Feb 06 2017
E.g.f.: (-1 + x + 7*x^2 + 6*x^3)*exp(x). - G. C. Greubel, Mar 05 2020
From Amiram Eldar, Jan 03 2021: (Start)
Sum_{n>=2} 1/a(n) = (7 - sqrt(3)*Pi - 16*log(2) + 9*log(3))/4.
Sum_{n>=2} (-1)^n/a(n) = Pi - 7/4 - sqrt(3)*Pi/2 + 2*log(2). (End)

A033593 a(n) = (n-1)*(2*n-1)*(3*n-1)*(4*n-1).

Original entry on oeis.org

1, 0, 105, 880, 3465, 9576, 21505, 42120, 74865, 123760, 193401, 288960, 416185, 581400, 791505, 1053976, 1376865, 1768800, 2238985, 2797200, 3453801, 4219720, 5106465, 6126120, 7291345, 8615376, 10112025, 11795680, 13681305, 15784440, 18121201, 20708280, 23562945
Offset: 0

Views

Author

Keywords

Comments

The sequence of n such that n is prime and (2*n+1) is prime is the sequence of Sophie Germain primes A005384; the subsequence of those for which in addition (3*n+2) is prime is A067256; and the subsequence of those for which in addition (4*n+3) is prime is A067257. - Jonathan Vos Post, Dec 15 2004

Crossrefs

a(n) = A011245(-n).

Programs

  • Magma
    [ 24*n^4-50*n^3+35*n^2-10*n+1: n in [0..40]]; // Vincenzo Librandi, Jan 30 2011
    
  • Magma
    [&*[s*n-1: s in [1..4]]: n in [0..40]]; // Bruno Berselli, May 23 2011
    
  • Maple
    1, seq( n^4*pochhammer((n-1)/n, 4), n=1..40); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[1-10 n+35 n^2-50 n^3+24 n^4,{n,0,40}] (* or *) LinearRecurrence[{5,-10, 10,-5,1}, {1,0,105,880,3465}, 40]  (* Harvey P. Dale, Jan 29 2011 & Apr 26 2011 *)
  • PARI
    a(n)=24*n^4-50*n^3+35*n^2-10*n+1 \\ Charles R Greathouse IV, May 23 2011
    
  • Sage
    [1]+[n^4*rising_factorial((n-1)/n, 4) for n in (1..40)] # G. C. Greubel, Mar 05 2020

Formula

G.f.: (1 -5*x +115*x^2 +345*x^3 +120*x^4)/(1-x)^5. - R. J. Mathar, Jan 30 2011
From G. C. Greubel, Mar 05 2020: (Start)
a(n) = n^4* Pochhammer((n-1)/n, 4).
E.g.f.: (1 - x + 53*x^2 + 94*x^3 + 24*x^4)*exp(x). (End)
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=2} 1/a(n) = 29/36 + (4/3 - 3*sqrt(3)/4)*Pi - 12*log(2) + 27*log(3)/4.
Sum_{n>=2} (-1)^n/a(n) = (1 + 4*sqrt(2)/3 - 3*sqrt(3)/2)*Pi + 14*log(2)/3 - 4*sqrt(2)*log(2)/3 + 8*sqrt(2)*log(2-sqrt(2))/3 - 29/36. (End)

A290810 Numbers k such that 6k-1, 12k-1 and 18k-1 are all primes.

Original entry on oeis.org

1, 4, 5, 14, 15, 29, 39, 40, 49, 70, 110, 159, 169, 204, 235, 260, 264, 315, 334, 355, 390, 425, 449, 490, 560, 565, 599, 634, 725, 729, 735, 820, 824, 889, 1019, 1029, 1349, 1379, 1419, 1510, 1580, 1590, 1694, 1719, 1765, 1925, 1930, 1950, 1985, 2044, 2150
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

If k is in the sequence then (6k-1)(12k-1)(18k-1) = 36k * (36k^2 - 11k + 1) - 1 is a Lucas-Carmichael number (A006972).
Analogous to A046025 as A006972 (Lucas-Carmichael numbers) is analogous to A002997 (Carmichael numbers).

Examples

			1 is in the sequence since 6*1 - 1 = 5, 12*1 - 1 = 11 and 18*1 - 1 = 17 are all primes, and 5*11*17 = 935 is a Lucas-Carmichael number.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; Do[ If[ AllTrue[{6 m - 1, 12 m - 1, 18 m - 1}, PrimeQ ], AppendTo[seq, m] ], {m, 1, 10^5} ]; seq
  • PARI
    isok(n) = isprime(6*n-1) && isprime(12*n-1) && isprime(18*n-1); \\ Michel Marcus, Aug 11 2017

Formula

6*a(n) - 1 = A067256(n+1).

A101779 a(n) = least k such that all of k, 2k+1, 3k+2, ..., nk+n-1 are primes, or 0 if no such k is found.

Original entry on oeis.org

2, 2, 3, 5, 5, 154769, 2894219, 2894219, 407874179, 214580145779, 9448481062019, 247236503934419, 2545206711847799, 18178612369988250179, 53792264108455702829
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Jan 13 2005

Keywords

Comments

a(10) > 3691000000, Robert G. Wilson v, Mar 23 2007
By definition the same as A088651(n)-1 if k exists. It is conjectured k always exists. - a(10)-a(15) from Jens Kruse Andersen, May 02 2008

Crossrefs

Programs

  • Mathematica
    f[1] = 2; f[n_] := f[n] = Block[{k = PrimePi@ f[n - 1], p, t = Table[i*p + (i - 1), {i, 2, n}]}, While[p = Prime@k; Union@PrimeQ@t != {True}, k++ ]; p]; Do[ Print[f@n // Timing], {n, 10}] (* Robert G. Wilson v, Mar 23 2007 *)

Extensions

a(10)-a(15) from Jens Kruse Andersen, May 02 2008
Showing 1-10 of 11 results. Next