cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A067256 Numbers n such that n, 2n+1, 3n+2 are primes.

Original entry on oeis.org

3, 5, 23, 29, 83, 89, 173, 233, 239, 293, 419, 659, 953, 1013, 1223, 1409, 1559, 1583, 1889, 2003, 2129, 2339, 2549, 2693, 2939, 3359, 3389, 3593, 3803, 4349, 4373, 4409, 4919, 4943, 5333, 6113, 6173, 8093, 8273, 8513, 9059, 9479, 9539, 10163, 10313
Offset: 1

Views

Author

Benoit Cloitre, Feb 20 2002

Keywords

Comments

a(n)*(2a(n)+1)*(3a(n)+2) are Lucas-Carmichael numbers for n > 1. Analogous to A174734 as A006972 (Lucas-Carmichael numbers) is analogous to A002997 (Carmichael numbers). - Amiram Eldar, Aug 11 2017

Crossrefs

Programs

A067258 Numbers n such that n, 2n+1, 3n+2, 4n+3, 5n+4 are primes.

Original entry on oeis.org

5, 89, 12899, 35999, 45569, 83579, 108359, 154769, 175349, 196769, 206009, 209039, 303029, 374009, 420419, 489179, 513239, 641549, 658349, 709589, 765749, 775949, 862769, 991079, 1018709, 1057019, 1265549, 1527629, 1609739, 1621079
Offset: 1

Views

Author

Benoit Cloitre, Feb 20 2002

Keywords

Comments

Except for 5, all terms == 29 (mod 30). - Robert Israel, May 28 2018

Crossrefs

Programs

  • Maple
    select(t -> andmap(isprime, [t,2*t+1,3*t+2,4*t+3,5*t+4]),
    [5, seq(i,i=29..2*10^6,30)]); # Robert Israel, May 28 2018
  • Mathematica
    a={};Do[p=Prime[n];If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4],AppendTo[a,p]],{n,1,10^5}];Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)

Extensions

More terms from Sascha Kurz, Mar 23 2002

A101767 Numbers n such that n, 2n+1, 3n+2, 4n+3, 5n+4, 6n+5 are primes.

Original entry on oeis.org

154769, 175349, 641549, 658349, 1018709, 2274089, 2894219, 5246009, 6621929, 7949759, 8189999, 8678669, 10366439, 12327629, 13951559, 18160379, 18924569, 21914339, 22279949, 22297799, 24765509, 25592279, 31029389, 31835159, 36802079, 38844119, 38911949
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

a(n) == 209 (mod 210) - John Cerkan, Mar 22 2018

Crossrefs

Programs

  • Mathematica
    a={}; Do[p=Prime[n]; If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4]&&PrimeQ[p*6+5], AppendTo[a, p]], {n, 1, 10^5}]; Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)

Extensions

Terms a(25) and beyond from John Cerkan, Mar 22 2018

A101770 Numbers n such that n, 2n+1, 3n+2, 4n+3, 5n+4, 6n+5, 7n+6, 8n+7, 9n+8 are primes.

Original entry on oeis.org

407874179, 1674689729, 6380217479, 15002412599, 24291715139, 28081637219, 34274541839, 37048322849, 45785202539, 53434060679, 100061694809, 101245430999, 103024911989, 127890675989, 130173995279, 141481942139, 149397940019, 177352532069, 212815427999, 214580145779, 294249502259, 296754699779
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

All terms == 2099 or 2309 (mod 2310). - Robert Israel, Jul 05 2016

Crossrefs

Programs

  • Maple
    select(n -> andmap(isprime,
    [n,2*n+1,3*n+2,4*n+3,5*n+4,6*n+5,7*n+6,8*n+7,9*n+8]),
    [seq(seq(2310*i+j, j=[2099,2309]),i=0..10^7)]); # Robert Israel, Jul 05 2016

Extensions

More terms from Jens Kruse Andersen, May 08 2008

A101769 Numbers p such that p, 2p+1, 3p+2, 4p+3, 5p+4, 6p+5, 7p+6, 8p+7 are primes.

Original entry on oeis.org

2894219, 60041519, 64523969, 242024369, 407874179, 1092040949, 1092075389, 1674689729, 2281060319, 5035134509, 5329406669, 5683382879, 5792424329, 6000216809, 6380217479, 10409580719, 11488703939, 13745865209, 14181824369, 14904963149, 15002412599, 15412603919
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

From Jeppe Stig Nielsen, Jul 07 2020: (Start)
Each term is -1 modulo 210.
The subset p, 2p+1, 4p+3, 8p+7 is a Cunningham chain, cf. A023272. (End)

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for i from 0 while count < 50 do
      for j in [1049,2099, 2309] do
        p:= 2310*i+j;
        if andmap(isprime,[p, 2*p + 1, 3*p + 2, 4*p + 3, 5*p + 4, 6*p + 5, 7*p + 6, 8*p + 7]) then
          count:= count+1; R:= R,p;
        fi
    od od:
    R; # Robert Israel, May 21 2025
  • Mathematica
    a={}; Do[p=Prime[n]; If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4]&&PrimeQ[p*6+5]&&PrimeQ[p*7+6]&&PrimeQ[p*8+7], AppendTo[a, p]], {n, 1, 10^7}]; Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)

Extensions

a(20)-a(22) from Jeppe Stig Nielsen, Jul 07 2020

A033593 a(n) = (n-1)*(2*n-1)*(3*n-1)*(4*n-1).

Original entry on oeis.org

1, 0, 105, 880, 3465, 9576, 21505, 42120, 74865, 123760, 193401, 288960, 416185, 581400, 791505, 1053976, 1376865, 1768800, 2238985, 2797200, 3453801, 4219720, 5106465, 6126120, 7291345, 8615376, 10112025, 11795680, 13681305, 15784440, 18121201, 20708280, 23562945
Offset: 0

Views

Author

Keywords

Comments

The sequence of n such that n is prime and (2*n+1) is prime is the sequence of Sophie Germain primes A005384; the subsequence of those for which in addition (3*n+2) is prime is A067256; and the subsequence of those for which in addition (4*n+3) is prime is A067257. - Jonathan Vos Post, Dec 15 2004

Crossrefs

a(n) = A011245(-n).

Programs

  • Magma
    [ 24*n^4-50*n^3+35*n^2-10*n+1: n in [0..40]]; // Vincenzo Librandi, Jan 30 2011
    
  • Magma
    [&*[s*n-1: s in [1..4]]: n in [0..40]]; // Bruno Berselli, May 23 2011
    
  • Maple
    1, seq( n^4*pochhammer((n-1)/n, 4), n=1..40); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[1-10 n+35 n^2-50 n^3+24 n^4,{n,0,40}] (* or *) LinearRecurrence[{5,-10, 10,-5,1}, {1,0,105,880,3465}, 40]  (* Harvey P. Dale, Jan 29 2011 & Apr 26 2011 *)
  • PARI
    a(n)=24*n^4-50*n^3+35*n^2-10*n+1 \\ Charles R Greathouse IV, May 23 2011
    
  • Sage
    [1]+[n^4*rising_factorial((n-1)/n, 4) for n in (1..40)] # G. C. Greubel, Mar 05 2020

Formula

G.f.: (1 -5*x +115*x^2 +345*x^3 +120*x^4)/(1-x)^5. - R. J. Mathar, Jan 30 2011
From G. C. Greubel, Mar 05 2020: (Start)
a(n) = n^4* Pochhammer((n-1)/n, 4).
E.g.f.: (1 - x + 53*x^2 + 94*x^3 + 24*x^4)*exp(x). (End)
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=2} 1/a(n) = 29/36 + (4/3 - 3*sqrt(3)/4)*Pi - 12*log(2) + 27*log(3)/4.
Sum_{n>=2} (-1)^n/a(n) = (1 + 4*sqrt(2)/3 - 3*sqrt(3)/2)*Pi + 14*log(2)/3 - 4*sqrt(2)*log(2)/3 + 8*sqrt(2)*log(2-sqrt(2))/3 - 29/36. (End)

A336059 Numbers p such that p, 2p-1, 3p-2, 4p-3 are primes.

Original entry on oeis.org

331, 1531, 3061, 4261, 4951, 6841, 10831, 15391, 18121, 23011, 25411, 26041, 31771, 33301, 40111, 41491, 45061, 49831, 53881, 59341, 65851, 70141, 73771, 78541, 88741, 95461, 96931, 109471, 111721, 112621, 117721, 131311, 133201, 134731, 135301, 150151, 165901
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jul 07 2020

Keywords

Comments

The subset p, 2p-1, 4p-3 is a Cunningham chain of the 2nd kind, cf. A057326.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], AllTrue[{#, 2# - 1, 3# - 2, 4# - 3}, PrimeQ] &] (* Amiram Eldar, Jul 07 2020 *)

Formula

a(n) = A237189(n) + 1.

A101779 a(n) = least k such that all of k, 2k+1, 3k+2, ..., nk+n-1 are primes, or 0 if no such k is found.

Original entry on oeis.org

2, 2, 3, 5, 5, 154769, 2894219, 2894219, 407874179, 214580145779, 9448481062019, 247236503934419, 2545206711847799, 18178612369988250179, 53792264108455702829
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Jan 13 2005

Keywords

Comments

a(10) > 3691000000, Robert G. Wilson v, Mar 23 2007
By definition the same as A088651(n)-1 if k exists. It is conjectured k always exists. - a(10)-a(15) from Jens Kruse Andersen, May 02 2008

Crossrefs

Programs

  • Mathematica
    f[1] = 2; f[n_] := f[n] = Block[{k = PrimePi@ f[n - 1], p, t = Table[i*p + (i - 1), {i, 2, n}]}, While[p = Prime@k; Union@PrimeQ@t != {True}, k++ ]; p]; Do[ Print[f@n // Timing], {n, 10}] (* Robert G. Wilson v, Mar 23 2007 *)

Extensions

a(10)-a(15) from Jens Kruse Andersen, May 02 2008
Showing 1-8 of 8 results.