A033593
a(n) = (n-1)*(2*n-1)*(3*n-1)*(4*n-1).
Original entry on oeis.org
1, 0, 105, 880, 3465, 9576, 21505, 42120, 74865, 123760, 193401, 288960, 416185, 581400, 791505, 1053976, 1376865, 1768800, 2238985, 2797200, 3453801, 4219720, 5106465, 6126120, 7291345, 8615376, 10112025, 11795680, 13681305, 15784440, 18121201, 20708280, 23562945
Offset: 0
-
[ 24*n^4-50*n^3+35*n^2-10*n+1: n in [0..40]]; // Vincenzo Librandi, Jan 30 2011
-
[&*[s*n-1: s in [1..4]]: n in [0..40]]; // Bruno Berselli, May 23 2011
-
1, seq( n^4*pochhammer((n-1)/n, 4), n=1..40); # G. C. Greubel, Mar 05 2020
-
Table[1-10 n+35 n^2-50 n^3+24 n^4,{n,0,40}] (* or *) LinearRecurrence[{5,-10, 10,-5,1}, {1,0,105,880,3465}, 40] (* Harvey P. Dale, Jan 29 2011 & Apr 26 2011 *)
-
a(n)=24*n^4-50*n^3+35*n^2-10*n+1 \\ Charles R Greathouse IV, May 23 2011
-
[1]+[n^4*rising_factorial((n-1)/n, 4) for n in (1..40)] # G. C. Greubel, Mar 05 2020
A153187
Triangle sequence: T(n, k) = -Product_{j=0..k+1} ((n+1)*j - 1).
Original entry on oeis.org
0, 1, 3, 2, 10, 80, 3, 21, 231, 3465, 4, 36, 504, 9576, 229824, 5, 55, 935, 21505, 623645, 21827575, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 101636305971200
Offset: 0
Triangle begins as:
0;
1, 3;
2, 10, 80;
3, 21, 231, 3465;
4, 36, 504, 9576, 229824;
5, 55, 935, 21505, 623645, 21827575;
6, 78, 1560, 42120, 1432080, 58715280, 2818333440;
7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425;
-
Flat(List([0..10], n-> List([0..n], k-> (-1)*Product([0..k+1], j-> j*(n+1) -1) ))); # G. C. Greubel, Mar 05 2020
-
[-(&*[j*(n+1)-1: j in [0..k+1]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 05 2020
-
seq(seq(-mul(j*(n+1)-1, j = 0..k+1), k = 0..n), n = 0..10); # G. C. Greubel, Mar 05 2020
-
T[n_, m_] = -Product[(n+1)*j -1, {j,0,m+1}]; Table[T[n, m], {n,0,10}, {m,0,n}]//Flatten
Table[-(n+1)^(k+2)*Pochhammer[-1/(n+1), k+2], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
-
T(n,k) = (-1)*prod(j=0, k+1, j*(n+1)-1);
for(j=0, 10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
[[-(n+1)^(k+2)*rising_factorial(-1/(n+1), k+2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 05 2020
A153273
Triangle read by rows: T(n,k) = Product_{i=0..k-2} (i*n + n - 1).
Original entry on oeis.org
1, 2, 10, 3, 21, 231, 4, 36, 504, 9576, 5, 55, 935, 21505, 623645, 6, 78, 1560, 42120, 1432080, 58715280, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 9, 171, 4959, 193401, 9476649, 559122291, 38579438079, 3047775608241, 271252029133449
Offset: 2
Triangle begins as:
1;
2, 10;
3, 21, 231;
4, 36, 504, 9576;
5, 55, 935, 21505, 623645;
6, 78, 1560, 42120, 1432080, 58715280;
7, 105, 2415, 74865, 2919735, 137227545, 7547514975;
8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640;
-
Flat(List([2..12], n-> List([2..n], k-> Product([0..k-2], j-> (j+1)*n-1) ))); # G. C. Greubel, Mar 05 2020
-
[(&*[j*n+n-1: j in [0..k-2]]): k in [2..n], n in [2..12]]; // G. C. Greubel, Mar 05 2020
-
A153273 := proc(n,m)
local i;
mul( n-1+i*n, i=0..m-2) ;
end proc:
seq(seq( A153273(n,m), m=2..n), n=2..12) ; # R. J. Mathar, Sep 04 2016
-
Table[n^(k-1)*Pochhammer[(n-1)/n, k-1], {n,2,12}, {k,2,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
-
T(n,k) = prod(j=0, k-2, j*n+n-1);
for(n=2,12, for(k=2,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
[[n^(k-1)*rising_factorial((n-1)/n, k-1) for k in (2..n)] for n in (2..12)] # G. C. Greubel, Mar 05 2020
Showing 1-3 of 3 results.
Comments