cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A006972 Lucas-Carmichael numbers: squarefree composite numbers k such that p | k => p+1 | k+1.

Original entry on oeis.org

399, 935, 2015, 2915, 4991, 5719, 7055, 8855, 12719, 18095, 20705, 20999, 22847, 29315, 31535, 46079, 51359, 60059, 63503, 67199, 73535, 76751, 80189, 81719, 88559, 90287, 104663, 117215, 120581, 147455, 152279, 155819, 162687, 191807, 194327, 196559, 214199
Offset: 1

Views

Author

Keywords

Comments

Wright proves that this sequence is infinite (Main Theorem 2). - Charles R Greathouse IV, Nov 03 2015
Conjecture: if k = p*q*r, p = a*d - 1, q = b*d - 1, r = c*d - 1 are distinct odd primes, with d = gcd(p + 1, q + 1, r + 1) and a*b*c*d divides k + 1, then k is a Lucas-Carmichael number. - Davide Rotondo, Dec 23 2020
A composite k is a Lucas-Carmichael number if and only if k | A322702(k+1). - Thomas Ordowski, May 06 2021

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersection of A024556 and A056729.
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (terms having 3, 4, 5, 6, 7 and 8 factors).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 3, a(n-1)) while isprime(k) or not issqrfree(k)
           or add(irem(k+1,i+1), i=factorset(k))>0 do od; k
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Apr 05 2018
  • Mathematica
    Select[ Range[ 2, 10^6 ], !PrimeQ[ # ] && Union[ Transpose[ FactorInteger[ # ] ][ [ 2 ] ] ] == {1} && Union[ Mod[ # + 1, Transpose[ FactorInteger[ # ] ][ [ 1 ] ] + 1 ] ] == {0} & ]
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if((n+1)%(f[i,1]+1) || f[i,2]>1, return(0)));#f[,1]>1 \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=min(sqrtint(B+1)-1, sqrtnint(B\m, k))); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); f(1, 1, 3, k);
    upto(n) = my(list=List()); for(k=3, oo, if(vecprod(primes(k+1))\2 > n, break); list=concat(list, lucas_carmichael(1, n, k))); vecsort(Vec(list)); \\ Daniel Suteu, Dec 01 2023

A216925 Lucas-Carmichael numbers with 3 prime factors.

Original entry on oeis.org

399, 935, 2015, 2915, 4991, 5719, 7055, 12719, 20705, 20999, 22847, 46079, 60059, 63503, 67199, 76751, 80189, 88559, 90287, 104663, 120581, 152279, 155819, 196559, 214199, 230159, 388079, 482143, 663679, 676799, 709019, 741311, 761039, 776567, 880319, 966239
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 20 2012

Keywords

Examples

			a(1) = 399 = 3*7*19
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216926, A216927, A217002, A217003, A217091.

A216927 Lucas-Carmichael numbers with 5 prime factors.

Original entry on oeis.org

588455, 1010735, 2276351, 2756159, 4107455, 4874639, 5669279, 6539819, 8421335, 13670855, 16184663, 16868159, 21408695, 23176439, 24685199, 25111295, 26636687, 30071327, 34347599, 34541639, 36149399, 36485015, 38999519, 39715319, 42624911, 43134959, 49412285
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 20 2012

Keywords

Examples

			a(1) = 588455 = 5*7*17*23*43
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A217002, A217003, A217091.

A217002 Lucas-Carmichael numbers with 6 prime factors.

Original entry on oeis.org

139501439, 196377335, 206238815, 239875559, 287432495, 336545495, 353107799, 381626399, 394426655, 406335215, 461829599, 464972255, 577901519, 592557119, 649351295, 653067359, 674628479, 761212655, 775931519, 777724415, 929892095, 993625919, 1073352959
Offset: 1

Views

Author

Donovan Johnson, Sep 22 2012

Keywords

Examples

			A006972(385) = 139501439 = 7*11*17*19*71*79.
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217003, A217091.

Programs

  • PARI
    upto(n, k=6) = my(A=vecprod(primes(k+1))\2, B=n); (f(m, l, p, k, u=0, v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), forprime(q = p, sqrtnint(B\m, k), my(t = m*q); my(L=lcm(l, q+1)); if(gcd(L, t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ Daniel Suteu, Sep 03 2022

A217003 Lucas-Carmichael numbers with 7 prime factors.

Original entry on oeis.org

3512071871, 10470856319, 11956093919, 12283814015, 13150303199, 15128703359, 15966728855, 18063158399, 21887083295, 22572006479, 23388059519, 23836221695, 23940514367, 25231063319, 25638464159, 27742047839, 28160966735, 30070781279, 31251542399, 35160944399
Offset: 1

Views

Author

Donovan Johnson, Sep 22 2012

Keywords

Examples

			A006972(1249) = 3512071871 = 7*11*17*23*31*53*71.
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217002, A217091.

Programs

  • PARI
    upto(n, k=7) = my(A=vecprod(primes(k+1))\2, B=n); (f(m, l, p, k, u=0, v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), forprime(q = p, sqrtnint(B\m, k), my(t = m*q); my(L=lcm(l, q+1)); if(gcd(L, t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ Daniel Suteu, Aug 30 2022

A217091 Lucas-Carmichael numbers with 8 prime factors.

Original entry on oeis.org

199195047359, 220323712895, 259305479279, 325451502935, 472765412735, 491091874559, 498357905759, 517270926095, 609349053599, 769658803199, 832015353455, 853833772799, 898951575599, 962940227039, 1087044101759, 1122857491679, 1249765950719, 1297923596255
Offset: 1

Views

Author

Donovan Johnson, Sep 26 2012

Keywords

Examples

			A006972(5453) = 199195047359 = 7*11*17*19*23*31*47*239.
		

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217002, A217003.

Programs

  • PARI
    upto(n, k=8) = my(A = vecprod(primes(k)), B=n); (f(m,l,p,k,u=0,v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), my(s = sqrtnint(B\m, k)); forprime(q = p, s, my(t = m*q); my(L=lcm(l,q+1)); if(gcd(L,t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ Daniel Suteu, Aug 29 2022

A349028 Lucas-Carmichael numbers with 9 prime factors.

Original entry on oeis.org

14563696180319, 16569718534655, 20203946790335, 22034564147519, 23315834862719, 23889526894079, 27074874805055, 28932092649215, 31534433588735, 34236981827279, 34249223161439, 45373136257295, 45593377151399, 50103079391519, 50415330959279, 50683388926247
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Nov 06 2021

Keywords

Examples

			14563696180319 = 11*13*17*23*29*41*47*59*79 and 12, 14, 18, 24, 30, 42, 48, 60, and 80 all divide 14563696180320.
		

Crossrefs

Intersection of A006972 and A046312.
Cf. A216928 (least Lucas-Carmichael number with n prime factors).
Cf. A216925, A216926, A216927, A217002, A217003, A217091, A349029, A349030 (Lucas-Carmichael numbers with 3-8, 10 and 11 prime factors).

Programs

  • PARI
    is(n)={omega(n)==9&&is_A006972(n)}

A349029 Lucas-Carmichael numbers with 10 prime factors.

Original entry on oeis.org

989565001538399, 1250312791224959, 1419432982021439, 1518134614712639, 2240225337903839, 2493922560242399, 2708548708646879, 2786001880066559, 2807577905060159, 2808521396058455, 3157015238986895, 3210972445532159, 3221015190555239, 3407706183722399, 3614740529402519
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Nov 06 2021

Keywords

Examples

			989565001538399 = 11*13*17*19*29*31*41*47*83*149 and 12, 14, 18, 20, 30, 32, 42, 48, 84, and 150 all divide 989565001538400.
		

Crossrefs

Intersection of A006972 and A046314.
Cf. A216928 (least Lucas-Carmichael number with n prime factors).
Cf. A216925, A216926, A216927, A217002, A217003, A217091, A349028, A349030 (Lucas-Carmichael numbers with 3-9 and 11 prime factors).

Programs

  • PARI
    is(n)={omega(n)==10&&is_A006972(n)}

A349030 Lucas-Carmichael numbers with 11 prime factors.

Original entry on oeis.org

20576473996736735, 42380075646230399, 75943207554554879, 83668951228080959, 96195222056687039, 116436396482735615, 132525862783734959, 134052021887096159, 162544912900261199, 175900784368936319, 186326804496197519, 190523141606006495, 196467189590024639
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Nov 06 2021

Keywords

Examples

			20576473996736735 = 5*7*11*17*23*31*47*53*71*107*233 and 6, 8, 12, 18, 24, 32, 48, 54, 72, 108, and 234 all divide 20576473996736736.
		

Crossrefs

Intersection of A006972 and A069272.
Cf. A216928 (least Lucas-Carmichael number with n prime factors).
Cf. A216925, A216926, A216927, A217002, A217003, A217091, A349028, A349029 (Lucas-Carmichael numbers with 3-10 prime factors).

Programs

  • PARI
    is(n)={omega(n)==11&&is_A006972(n)}

A300959 Number of prime factors of the n-th Lucas-Carmichael number.

Original entry on oeis.org

3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 5, 4, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 5, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 5, 3, 4, 3
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 17 2018

Keywords

Comments

The number of prime factors is always >= 3.

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers).
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (Lucas-Carmichael numbers with 3 to 8 prime factors).
Cf. A216928 (Least Lucas-Carmichael number with n prime factors).

Programs

  • PARI
    islc(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1; \\ from A006972
    lista(nn) = for (n=1, nn, if (islc(n), print1(omega(n), ", "))); \\ Michel Marcus, Mar 17 2018

Formula

a(n) = A001221(A006972(n)).
Showing 1-10 of 10 results.