A262051
Euler pseudoprimes to base 3: composite integers such that abs(3^((n - 1)/2)) == 1 mod n.
Original entry on oeis.org
121, 703, 1541, 1729, 1891, 2465, 2821, 3281, 4961, 7381, 8401, 8911, 10585, 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009, 29341, 30857, 31621, 31697, 41041, 44287, 46657, 47197, 49141, 50881, 52633, 55969, 63139, 63973, 72041, 74593, 75361
Offset: 1
-
eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[26000] + 1, eulerPseudoQ[#, 3] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
-
for(n=1, 1e5, if( Mod(3, (2*n+1))^n == 1 || Mod(3, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015
A262052
Euler pseudoprimes to base 5: composite integers such that abs(5^((n - 1)/2)) == 1 mod n.
Original entry on oeis.org
217, 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801, 13021, 13333, 14981, 15751, 15841, 16297, 21361, 23653, 24211, 25351, 29539, 30673, 38081, 40501, 41041, 44173, 44801, 46657, 47641, 48133, 53971, 56033, 67921, 75361, 79381, 90241, 98173, 100651, 102311
Offset: 1
-
eulerPseudoQ[n_?PrimeQ, b_] = False; eulerPseudoQ[n_, b_] := Block[{p = PowerMod[b, (n - 1)/2, n]}, p == Mod[1, n] || p == Mod[-1, n]]; Select[2 Range[27000] + 1, eulerPseudoQ[#, 5] &] (* Michael De Vlieger, Sep 09 2015, after Jean-François Alcover at A006970 *)
-
for(n=1, 1e5, if( Mod(5, (2*n+1))^n == 1 || Mod(5, (2*n+1))^n == 2*n && bigomega(2*n+1) != 1 , print1(2*n+1", "))); \\ Altug Alkan, Oct 11 2015
A048950
Base-3 Euler-Jacobi pseudoprimes.
Original entry on oeis.org
121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585, 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 44287, 46657, 47197, 49141, 50881, 52633, 55969, 63139, 63973, 74593, 75361, 79003, 82513
Offset: 1
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
(union of all three) | | | |
-
Select[Range[1, 10^5, 2], GCD[#, 3] == 1 && CompositeQ[#] && PowerMod[3, (# - 1)/2, #] == Mod[JacobiSymbol[3, #], #] &] (* Amiram Eldar, Jun 28 2019 *)
-
is(n) = n%2==1 && gcd(n,3)==1 && Mod(3, n)^((n-1)/2)==kronecker(3,n)
forcomposite(c=1, 83000, if(is(c), print1(c, ", "))) \\ Felix Fröhlich, Jul 15 2019
A033181
Absolute Euler pseudoprimes: odd composite numbers n such that a^((n-1)/2) == +-1 (mod n) for every a coprime to n.
Original entry on oeis.org
1729, 2465, 15841, 41041, 46657, 75361, 162401, 172081, 399001, 449065, 488881, 530881, 656601, 670033, 838201, 997633, 1050985, 1615681, 1773289, 1857241, 2113921, 2433601, 2455921, 2704801, 3057601, 3224065, 3581761, 3664585, 3828001, 4463641, 4903921
Offset: 1
- Daniel Lignon and Dana Jacobsen, Table of n, a(n) for n = 1..10000 (first 124 terms from Daniel Lignon)
- Lorenzo Di Biagio, Euler Pseudoprimes for Half of the Bases, Integers, Vol. 12, No. 6 (2012), pp. 1231-1237, arXiv preprint, arXiv:1109.3596 [math.NT] (2011).
- Math Help Forum, how many absolute euler pseudoprimes less than a million, Sep 2009.
- Louis Monier, Evaluation and comparison of two efficient primality testing algorithms, Theoretical Computer Science, Vol. 11 (1980), pp. 97-108.
- Index entries for sequences related to pseudoprimes
-
filter:= proc(n)
local q;
if isprime(n) then return false fi;
if 2 &^ (n-1) mod n <> 1 then return false fi;
if not numtheory:-issqrfree(n) then return false fi;
for q in numtheory:-factorset(n) do
if (n-1)/2 mod (q-1) <> 0 then return false fi
od:
true;
end proc:
select(filter, [seq(i,i=3..10^7,2)]); # Robert Israel, Nov 24 2015
-
absEulerpspQ[n_Integer?PrimeQ]:=False;
absEulerpspQ[n_Integer?EvenQ]:=False;
absEulerpspQ[n_Integer?OddQ]:=Module[{a=2},
While[aDaniel Lignon, Sep 09 2015 *)
aQ[n_] := Module[{f = FactorInteger[n], p},p=f[[;;,1]]; Length[p] > 1 && Max[f[[;;,2]]]==1 && AllTrue[p, Divisible[(n-1)/2, #-1] &]];Select[Range[3, 2*10^5], aQ] (* Amiram Eldar, Nov 20 2019 *)
-
use ntheory ":all"; my $n; foroddcomposites { say if is_carmichael($) && vecall { (($n-1)>>1) % ($-1) == 0 } factor($n=$); } 1e6; # _Dana Jacobsen, Dec 27 2015
"Absolute Euler pseudoprimes" added to name by
Daniel Lignon, Sep 09 2015
A306310
Odd numbers k > 1 such that 2^((k-1)/2) == -(2/k) = -A091337(k) (mod k), where (2/k) is the Jacobi (or Kronecker) symbol.
Original entry on oeis.org
341, 5461, 10261, 15709, 31621, 49981, 65077, 83333, 137149, 176149, 194221, 215749, 219781, 276013, 282133, 534061, 587861, 611701, 653333, 657901, 665333, 688213, 710533, 722261, 738541, 742813, 769757, 950797, 1064053, 1073021, 1109461, 1141141, 1357621, 1398101
Offset: 1
341 is a term because (2/341) = -1, and 2^((341-1)/2) == 1 (mod 341).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+---------+
-----------------------------------+-------------------+---------+---------+
-----------------------------------+-------------------+---------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+---------+
(union of all three) | | | |
-
isA306310(k)=(k%8==5) && Mod(2, k)^((k-1)/2)==1
-
isok(k) = (k>1) && (k%2) && (Mod(2, k)^((k-1)/2) == Mod(-kronecker(2, k), k)); \\ Michel Marcus, Feb 07 2019
A375490
Odd numbers k > 1 such that gcd(3,k) = 1 and 3^((k-1)/2) == -(3/k) (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 3 (A262051) that are not Euler-Jacobi pseudoprimes to base 3 (A048950).
Original entry on oeis.org
1541, 2465, 4961, 30857, 31697, 72041, 83333, 162401, 192713, 206981, 258017, 359369, 544541, 565001, 574397, 653333, 929633, 1018601, 1032533, 1133441, 1351601, 1373633, 1904033, 1953281, 2035661, 2797349, 2864501, 3264797, 3375041, 3554633, 3562361, 3636161
Offset: 1
1541 is a term because (3/1541) = -1, and 3^((1541-1)/2) == 1 (mod 1541).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
(union of all three) | | | |
-
isA375490(k) = (k>1) && gcd(k,6)==1 && Mod(3,k)^((k-1)/2)==-kronecker(3,k)
-
isA375490(k) = k%12==5 && Mod(3,k)^((k-1)/2)==1 \\ Jianing Song, Sep 07 2024
A375816
Odd numbers k > 1 such that gcd(5,k) = 1 and 5^((k-1)/2) == -(5/k) (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol); Euler pseudoprimes to base 5 (A262052) that are not Euler-Jacobi pseudoprimes to base 5 (A375914).
Original entry on oeis.org
217, 13333, 16297, 23653, 30673, 44173, 46657, 48133, 56033, 98173, 130417, 131977, 136137, 179893, 188113, 190513, 197633, 267977, 334153, 334657, 347777, 360533, 407353, 412933, 421637, 486157, 667153, 670033, 677917, 694153, 710533, 765073, 839833, 935137, 997633
Offset: 1
217 is a term because (5/217) = -1, and 5^((217-1)/2) == 1 (mod 217).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
-
isA375816(k) = (k>1) && gcd(k,10)==1 && Mod(5,k)^((k-1)/2)==-kronecker(5,k)
-
isA375816(k) = (k%20==13 || k%20==17) && Mod(5,k)^((k-1)/2)==1
A375914
Base-5 Euler-Jacobi pseudoprimes: odd composite k coprime to 5 such that 5^((k-1)/2) == (5/k) (mod n), where (5/k) is the Jacobi symbol (or Kronecker symbol).
Original entry on oeis.org
781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 121463, 133141
Offset: 1
781 is a term because 781 = 11*71 is composite, (5/781) = 1, and 5^((781-1)/2) == 1 (mod 781).
7813 is a term because 7813 = 13*601 is composite, (5/7813) = -1, and 5^((7813-1)/2) == -1 (mod 7813).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
A375915
Composite numbers k == 1, 9 (mod 10) such that 5^((k-1)/2) == 1 (mod k).
Original entry on oeis.org
781, 1541, 1729, 5461, 5611, 6601, 7449, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 133141, 135201, 141361
Offset: 1
29539 is a term because 29539 = 109*271 is composite, 29539 == 9 (mod 10), and 5^((29539-1)/2) == 1 (mod 29539).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
A375916
Composite numbers k == 3, 7 (mod 10) such that 5^((k-1)/2) == -1 (mod k).
Original entry on oeis.org
7813, 121463, 195313, 216457, 315283, 319507, 353827, 555397, 559903, 753667, 939727, 1164083, 1653667, 1663213, 1703677, 1809697, 1958503, 2255843, 2339377, 2423323, 2942333, 2987167, 3313643, 4265257, 4635053, 5376463, 5979247, 6611977, 7784297, 7859707
Offset: 1
216457 is a term because 216457 = 233*929 is a composite, 216457 == 7 (mod 10), and 5^((216457-1)/2) == -1 (mod 216457).
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
(union of all three) | | | |
Showing 1-10 of 28 results.
Comments