cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A153514 Terms of A122780 which are not Carmichael numbers A002997.

Original entry on oeis.org

1, 6, 66, 91, 121, 286, 671, 703, 726, 949, 1541, 1891, 2665, 2701, 3281, 3367, 3751, 4961, 5551, 7107, 7381, 8205, 8401, 8646, 11011, 12403, 14383, 15203, 15457, 16471, 16531, 18721, 19345, 23521, 24046, 24661, 24727, 28009, 29161, 30857, 31621
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

For the intersection of this sequence and A153508, see A153513.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local p;
      if isprime(n) or (3 &^n - 3 mod n <> 0) then return false fi;
      if n::even then return true fi;
      if not numtheory:-issqrfree(n) then return true fi;
      for p in numtheory:-factorset(n) do
        if n-1 mod (p-1) <> 0 then return true fi
      od;
    false
    end proc:
    filter(1):= true:
    select(filter, [$1..10^5]); # Robert Israel, Jan 29 2017
  • Mathematica
    okQ[n_] := !PrimeQ[n] && PowerMod[3, n, n] == Mod[3, n] && Mod[n, CarmichaelLambda[n]] != 1;
    Select[Range[10^5], okQ] (* Jean-François Alcover, Mar 27 2019 *)

A153515 Terms of A122782 which are not Carmichael numbers A002997.

Original entry on oeis.org

1, 4, 10, 15, 20, 65, 124, 190, 217, 310, 435, 781, 1541, 1891, 3565, 3820, 4123, 4495, 5461, 5611, 5662, 5731, 6735, 7449, 7813, 8029, 8290, 9881, 11041, 11476, 12801, 13021, 13333, 13981, 14981, 15751, 16297, 17767, 20345, 20710, 21361, 22791
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

Are there entries in this sequence which are also in A153513 ?
Yes. This subsequence starts 721801, 873181, 4504501, 8646121, 9006401, 9863461, 10403641, 10680265,... (similar to A153580). - R. J. Mathar, Mar 30 2011

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], !PrimeQ[#] && PowerMod[5, #, # ] == Mod[5, #] && Mod[#, CarmichaelLambda[#]] != 1 &] (* Amiram Eldar, Sep 19 2019 *)

A153580 Terms of A083737 which are not Carmichael numbers (A002997).

Original entry on oeis.org

721801, 873181, 4504501, 8646121, 9006401, 9863461, 10403641, 12322133, 14609401, 15913261, 18595801, 18736381, 20234341, 21397381, 22066201, 22369621, 22885129, 25326001, 25696133, 28312921, 36307981, 42702661
Offset: 1

Views

Author

Ray Chandler & Artur Jasinski, Dec 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5*10^7], ! PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, # - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 && Mod[ #, CarmichaelLambda[ # ]] != 1 &] (* Ray Chandler, Dec 28 2008 *)

A153581 Pseudoprimes to bases 2,3,5 and 7 which are not Carmichael numbers (A002997).

Original entry on oeis.org

721801, 8646121, 10403641, 22885129, 36307981, 42702661, 46094401, 48064021, 52204237, 79398901, 80918281, 81954133, 114329881, 116151661, 143168581, 170782921, 188985961, 217145881, 220531501, 282707461, 299671921, 303373801, 326695141, 353815801, 361307521
Offset: 1

Views

Author

Ray Chandler & Artur Jasinski, Dec 28 2008

Keywords

Comments

Terms congruent to 5 (mod 6): 468950021, 493108481, 659846021, 5936122901, 8144063621, ... - Robert G. Wilson v, Sep 03 2014
Terms not congruent to 1 (mod 12): 468950021, 493108481, 643767931, 659846021, 773131927, 5779230451, 5936122901, 7294056727, 8144063621, 9671001451, ... - Robert G. Wilson v, Sep 03 2014

Crossrefs

Programs

  • Mathematica
    fQ[n_] := ! PrimeQ[n] && PowerMod[2, n - 1, n] == 1 && PowerMod[3, n - 1, n] == 1 && PowerMod[5, n - 1, n] == 1 && PowerMod[7, n - 1, n] == 1 && Mod[n, CarmichaelLambda[n]] != 1; Select[ Range[ 365000000], fQ] (* Ray Chandler, Dec 28 2008; corrected by Robert G. Wilson v, Sep 01 2014 *)

Extensions

Terms a(8) and onward from Robert G. Wilson v, Sep 01 2014

A153519 Nonprime numbers k such that 10^k == 10 (mod k) and are not Carmichael numbers.

Original entry on oeis.org

1, 6, 9, 10, 15, 18, 30, 33, 45, 55, 90, 91, 99, 165, 246, 259, 370, 385, 451, 481, 495, 505, 657, 703, 715, 909, 1035, 1045, 1233, 1626, 2035, 2409, 2981, 3333, 3367, 3585, 4005, 4141, 4187, 4521, 4545, 5005, 5461, 6533, 6541, 6565, 7107, 7471, 7777, 8149
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

Old name: Members of A121014 which are not Carmichael numbers A002997.

Crossrefs

Programs

  • Mathematica
    Select[Range[8000], !PrimeQ[#] && PowerMod[10, #, #] == Mod[10, #] && !(# > 1 && Divisible[# - 1, CarmichaelLambda[#]]) &] (* Amiram Eldar, Mar 19 2020 *)
  • PARI
    isok(n) = !isprime(n) && !is_A002997(n) && (Mod(10^n, n) == Mod(10, n)); \\ Michel Marcus, Nov 06 2013

Extensions

New name from Michel Marcus, Nov 06 2013

A333130 Numbers that are super pseudoprimes to both bases 2 and 3.

Original entry on oeis.org

2701, 18721, 31621, 49141, 83333, 90751, 104653, 226801, 282133, 653333, 665281, 721801, 873181, 1373653, 1530787, 1537381, 1584133, 1690501, 1755001, 1987021, 2008597, 2035153, 2284453, 2746589, 2944261, 3059101, 3116107, 3363121, 3375041, 3375487, 4082653, 4314967
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2020

Keywords

Comments

The first term that has more than 2 prime factors is a(1067) = A333131(1) = 11500521553.
The first term that is also a Carmichael number is a(1131) = 13079177569.

Examples

			2701 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are all primes: 37 and 73.
		

Crossrefs

Intersection of A050217 and A328662.
Subsequence of A001567, A005935, A052155 and A153513.

Programs

  • Mathematica
    pspQ[n_] := CompositeQ[n] && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; Select[Range[10^6], pspQ]

A333131 Super pseudoprimes to both bases 2 and 3 (A333130) with more than two prime factors (counted with multiplicity).

Original entry on oeis.org

11500521553, 13079177569, 52474339009, 168003672409, 229352039821, 280792563977, 318289021201, 428178002569, 918660756421, 2015841188197, 2367478228501, 2544457029601, 2639665216117, 3023595814801, 3457449931321, 3712164285421, 4348114583017, 6046196043229
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2020

Keywords

Comments

Up to 2^64 all the 1085 terms are nonsquarefree, 2 terms have 4 prime factors: a(163) = 18362297383286473 = 3037 * 6073 * 9109 * 109297 and a(651) = 2587580959818925201 = 18121 * 36241 * 54361 * 72481, and no term have more than 4 prime factors.

Examples

			11500521553 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are either primes (937, 1873, 6553) or Fermat pseudoprimes to both bases 2 and 3 (1755001, 6140161, 12273769, 11500521553).
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PrimeOmega[n] > 2 && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; seq = {}; Do[If[pspQ[n], AppendTo[seq, n]], {n, 1, 6*10^10}]; seq
Showing 1-7 of 7 results.