A110917 Conversion to a regular-simple continued-fraction approximation of the limit value (C0=2.7745963816360040537087...) of the continued fraction (numerator = A110976 and denominator = A110977) based on the sequence of the distances of n from closest primes (A051699).
2, 1, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 4, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 4, 5, 4, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 4, 5
Offset: 1
Examples
C0 = a(1) +1/( a(2) +1/( a(3) +1/( a(4) +1/( a(5) +...=2+1/(1+1/(3+1/(2+1/(3+...
References
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 110.
Programs
-
Maple
cd:=proc(N) # d[n]distance of n from closest prime A[0]:=d[0]; A[1]:=d[1]*A[0]+1; B[0]:=1; B[1]:=d[1]*B[0]; for n from 2 by 1 to N do A[n]:=d[n]*A[n-1]+A[n-2]; B[n]:=d[n]*B[n-1]+B[n-2]; od; R:=A[N]/B[N]; convert(R,confrac); end:
Formula
see program
Comments