cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111004 Number of permutations avoiding a consecutive 132 pattern.

Original entry on oeis.org

1, 1, 2, 5, 16, 63, 296, 1623, 10176, 71793, 562848, 4853949, 45664896, 465403791, 5108121216, 60069714207, 753492215808, 10042248398625, 141712039383552, 2110880441637045, 33097631526180864, 544903371859138335, 9398216812334008320, 169463659008217238055
Offset: 0

Views

Author

David Callan, Oct 01 2005

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 132 (pattern entries must occur consecutively in the permutation).
In the Mathematica code below, a[n, k] is the number of such permutations with first entry k and they are counted recursively by the length, say ell, of the longest increasing left factor L. (For ell >= 2 the first entry following L must be < the penultimate entry of L or else a consecutive 132 would occur.) The first sum counts ell = 1, the second ell = 2, the third ell >= 3; m is the penultimate entry of L and j is the first entry in the (reduced) subpermutation following L. Note that j is indexed from 0 to cover the case when L is the entire permutation.
Asymptotically, a(n)/n! ~ c/r^n where r = 1.2755477364172... is the unique positive root of Integrate[exp(-t^2/2), {t,0,r}] = 1 and c = exp(r^2/2)/r = 1.7685063678958....

Examples

			The first 3 entries of 2431 form a consecutive 132 pattern.
The 4!-a(4) = 8 permutations on [4] that DO contain a consecutive 132 pattern are 1243, 1324, 1423, 1432, 2143, 2431, 3142, 4132. Also, for example, 1342 contains a scattered 1-3-2 pattern but not a consecutive 132.
		

Crossrefs

Row m = 0 of A327722.

Programs

  • Mathematica
    Clear[a]; a[0, 0] = a[0] = 1; a[n_, 0]/;n>=1 := 0; a[n_, k_]/;k>n := 0; a[n_, k_]/;1<=k<=n<=2 := 1; a[n_, k_]/;n>=3 := a[n, k] = Sum[a[n-1, j], {j, k-1}] + (n-k)Sum[a[n-2, j], {j, k-1}] + Sum[(n-m) Binomial[m-k-1, ell-3]a[n-ell, j], {ell, 3, n-k+1}, {m, k+ell-2, n-1}, {j, 0, m-ell+1}]; a[n_]/;n>=1 := a[n] = Sum[a[n, k], {k, n}]; Table[a[n], {n, 0, 15}]
    (* or, faster *) ExpGfToList[f_, n_, x_] := CoefficientList[Normal[Series[f, {x, 0, n}]] /. x^(pwr_) -> pwr!*x^pwr, x]; ExpGfToList[1/( 1-(Pi/2)^(1/2)*Erf[z/2^(1/2)] ), 25, z]

Formula

E.g.f.: Sum_{n >= 0} a(n) x^n/n! = 1/( 1 - (Pi/2)^(1/2)*Erf(x/2^(1/2)) ).
a(n) = A197365(n,0). - Peter Bala, Oct 14 2011
From Sergei N. Gladkovskii, Nov 28 2011: (Start)
E.g.f.: A(x) = 1/( 1 - (Pi/2)^(1/2)*erf(x/2^(1/2)) ) = (1 + (x^3)/(2*(x-1)*W(0) -(x^2)))/(1 - x) with
W(k) = 2*(k^2) + (5 - 4*(x^2))*k + 3 - 2*(x^2) + 2*(x^2)*(k+1)*((2*k + 3)^2)/W(k+1) (continued fraction). (End)