cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300711 a(n) = A000367(n)/A001067(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 17, 13, 53, 1, 5, 7, 19, 29, 59, 1, 61, 31, 1, 1, 65, 11, 67, 17, 23, 7, 71, 1, 73, 37
Offset: 1

Views

Author

Bernd C. Kellner, Mar 11 2018

Keywords

Comments

a(n) is the trivial factor of the numerator of Bernoulli(2n) that divides 2n.
The remaining part of the (unsigned) numerator equals a product of powers of irregular primes, or 1 if and only if n = 1, 2, 3, 4, 5, 7.
Alternatively, a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 does not divide 2n.

Examples

			a(5) = 5, since Bernoulli(10) = 5/66 and Bernoulli(10)/10 = 1/132.
		

Crossrefs

A111008 equals the first entries and slightly differs, see a(35).

Programs

  • Julia
    using Nemo
    function A300711(n)
        b = bernoulli(n)
        div(numerator(b), numerator(b*QQ(1,n)))
    end
    [A300711(n) for n in 2:2:148] |> println # Peter Luschny, Mar 11 2018
    
  • Maple
    A300711 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
    P := P*f[1]^f[2] fi od; P end: seq(A300711(n), n=1..74); # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Numerator[BernoulliB[n]]/Numerator[BernoulliB[n]/n], {n, 2, 100, 2}]
  • PARI
    a(n) = gcd(numerator(bernfrac(2*n)), 2*n) \\ Jianing Song, Apr 05 2021
    
  • PARI
    upto(N)=bernvec(N);forstep(n=2,2*N,2,print1(gcd(numerator(bernfrac(n)), n),", ")) \\ Jeppe Stig Nielsen, Jun 22 2023

Formula

a(n) = numerator(Bernoulli(2n))/numerator(Bernoulli(2n)/(2n)).
a(n) * A195989(n) = n. - Peter Luschny, Mar 12 2018
From Jianing Song, Apr 05 2021: (Start)
a(n) = gcd(numerator(Bernoulli(2n)), 2n).
a(n) = A002445(n)*(2n)/A075180(2n-1). (End)

A164877 First bisection of A164869.

Original entry on oeis.org

0, 12, 120, 252, 240, 660, 32760, 84, 8160, 14364, 6600, 3036, 65520, 156, 24360, 429660, 16320, 204, 69090840, 228, 541200, 75852, 30360, 12972, 2227680, 3300, 82680, 43092, 48720, 20532, 3407203800, 372, 32640, 4271652, 2040, 328020, 10087262640
Offset: 0

Views

Author

Paul Curtz, Aug 29 2009

Keywords

Comments

All entries are multiples of 12.
a(n) = A006953(n) * A111008(n), n>0.

Formula

a(n) = A164869(2n).
a(n) = A002445(n) * A005843(n).

Extensions

Edited and extended by R. J. Mathar, Sep 03 2009

A228838 a(n) = n * A002445(n).

Original entry on oeis.org

0, 6, 60, 126, 120, 330, 16380, 42, 4080, 7182, 3300, 1518, 32760, 78, 12180, 214830, 8160, 102, 34545420, 114, 270600, 37926, 15180, 6486, 1113840, 1650, 41340, 21546, 24360, 10266, 1703601900, 186, 16320, 2135826, 1020, 164010, 5043631320, 222, 1140
Offset: 0

Views

Author

Paul Curtz, Sep 05 2013

Keywords

Comments

a(n+1) is a multiple of A040031(n+1), sequence of period 2: 6, 12.
a(n) is divisible by A040879(n)=30 followed by the sequence of period 2: 6, 60. See A040214 and A165734.
Note that A164877(n) + A000367(n) = A164558(2n).

Examples

			a(0)=0*1, a(1)=1*6, a(2)=2*30=60,, a(3)=3*42=126.
		

Programs

  • PARI
    a(n)=n*denominator(bernfrac(2*n))

Formula

a(n) = A176328(2n) - A000367(n).
a(n) = A164877(n)/2.
a(n+1) = A111008(n) * A036283(n+1).
2*a(n) = A164558(2n) - A000367(n).
a(n) = A164558(2n) - A176328(2n).

Extensions

Typo in data fixed by Colin Barker, Jul 03 2015
Showing 1-3 of 3 results.