cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111049 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 9, 4, 1, 11, 27, 25, 8, 1, 20, 70, 100, 65, 16, 1, 37, 170, 330, 325, 161, 32, 1, 70, 399, 980, 1295, 966, 385, 64, 1, 135, 917, 2723, 4515, 4501, 2695, 897, 128, 1, 264, 2076, 7224, 14406, 17976, 14364, 7176, 2049, 256
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2005

Keywords

Examples

			Rows begin:
  1;
  1,   1;
  1,   3,    2;
  1,   6,    9,    4;
  1,  11,   27,   25,     8;
  1,  20,   70,  100,    65,    16;
  1,  37,  170,  330,   325,   161,    32;
  1,  70,  399,  980,  1295,   966,   385,   64;
  1, 135,  917, 2723,  4515,  4501,  2695,  897,  128;
  1, 264, 2076, 7224, 14406, 17976, 14364, 7176, 2049, 256;
		

Crossrefs

Programs

  • Mathematica
    With[{m = 9}, CoefficientList[CoefficientList[Series[(1 - 2*x - 2*x*y + x^2 *y + x^2*y^2)/(1 - 3*x - 3*x*y + 2*x^2 + 4*x^2*y + 2*x^2*y^2), {x, 0 , m}, {y, 0, m} ], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n, k) = if (k<=n, 2^(n-1)*binomial(n-1, k-1)+binomial(n-1, k));
    matrix(10, 10, n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 17 2020

Formula

T(n, k) = 2^(n-1)binomial(n-1, k-1) + binomial(n-1, k).
Sum_{k=0..n} T(n, k) = 2^(n-1)*(1+2^(n-1)) = A063376(n-1) for n >= 1.
From Peter Bala, Mar 20 2013: (Start)
O.g.f.: (1 - 2*t + x*t*(t-2) + x^2*t^2)/((1 - t*(1+x))*(1 - 2*t*(1+x))) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
E.g.f.: (x + 2*exp((1+x)*t) + x*exp(2*t*(1+x)))/(2*(1+x)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2/2! + ....
Recurrence equation: for n >= 1, T(n+1,k) = 2*T(n,k) + 2*T(n,k-1) - binomial(n,k). (End)
From Philippe Deléham, Oct 18 2013: (Start)
G.f.: (1 - 2*x - 2*x*y + x^2*y + x^2*y^2)/(1 - 3*x - 3*x*y + 2*x^2 + 4*x^2*y + 2*x^2*y^2).
T(n,k) = 3*T(n-1,k) + 3*T(n-1,k-1) - 2*T(n-2,k) - 4*T(n-2,k-1) - 2*T(n-2,k-2), T(0,0) = T(1,1) = T(1,0) = T(2,0) = 1, T(2,1) = 3, T(2,2) = 2, T(n,k) = 0 if k > n or if k < 0. (End)

Extensions

Wrong a(42) removed by Georg Fischer, Feb 17 2020