cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A111159 Numbers k such that A111075(k) is odd.

Original entry on oeis.org

1, 3, 4, 6, 12, 16, 24, 25, 27, 48, 49, 54, 64, 75, 96, 100, 108, 121, 147, 150, 169, 192, 196, 216, 243, 256, 289, 294, 300, 361, 363, 384, 400, 432, 484, 486, 507, 529, 588, 600, 625, 675, 676, 726, 768, 784, 841, 864, 867, 961, 972, 1014, 1024
Offset: 1

Views

Author

Paul D. Hanna, Oct 12 2005

Keywords

Crossrefs

Formula

Conjecture: A111075(n) is odd whenever: (i) n = m^2 for all m>=1 such that 3 does not divide m, or (ii) n = 3*A028982(m) for all m>=1. Also, A028982 gives "Union of nonzero squares and twice squares."
It is not difficult to show that the conjecture is true. - Max Alekseyev, Oct 12 2005

A203802 a(n) = Fibonacci(n) * Sum_{d|n} -(-1)^(n/d) / Fibonacci(d).

Original entry on oeis.org

1, 0, 3, -5, 6, -3, 14, -48, 52, -10, 90, -329, 234, -28, 1038, -2349, 1598, -1044, 4182, -12750, 17262, -198, 28658, -135285, 90031, -520, 300405, -554974, 514230, -464658, 1346270, -5188656, 5326470, -3570, 11782764, -34556612, 24157818, -9348, 95140422, -256249218, 165580142
Offset: 1

Views

Author

Paul D. Hanna, Jan 11 2012

Keywords

Examples

			G.f.: A(x) = x + 3*x^3 - 5*x^4 + 6*x^5 - 3*x^6 + 14*x^7 - 48*x^8 + 52*x^9 +...
where A(x) = x/(1+x-x^2) + x^2/(1+3*x^2+x^4) + x^3/(1+4*x^3-x^6) + x^4/(1+7*x^4+x^8) + x^5/(1+11*x^5-x^10) + x^6/(1+18*x^6+x^12) +...+ x^n/(1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
Illustration of terms.
a(1) = 1; a(2) = 1*(-1/1 + 1/1) = 0; a(3) = 2*(1/1 + 1/2) = 3;
a(4) = 3*(-1/1 - 1/1 + 1/3) = -5; a(5) = 5*(1/1 + 1/5) = 6;
a(6) = 8*(-1/1 + 1/1 - 1/2 + 1/8) = -3; a(7) = 13*(1/1 + 1/13) = 14;
a(8) = 21*(-1/1 - 1/1 - 1/3 + 1/21) = -48; ...
		

Crossrefs

Cf. A111075, A000045, A000204 (Lucas).

Programs

  • PARI
    {a(n)=fibonacci(n) * sumdiv(n, d, -(-1)^(n/d) / fibonacci(d))}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1, n, x^m/(1 + Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))), n)}

Formula

G.f.: Sum_{n>=1} x^n/(1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).

A203797 a(n) = Pell(n) * Sum_{d|n} 1/Pell(d), where Pell(n) = A000129(n).

Original entry on oeis.org

1, 3, 6, 19, 30, 120, 170, 647, 1183, 3650, 5742, 24916, 33462, 121652, 240756, 746639, 1136690, 4707147, 6625110, 25882770, 46565244, 139849776, 225058682, 978088748, 1356970471, 4750318586, 9182205852, 29333908544, 44560482150, 188175715440, 259717522850, 994309609247
Offset: 1

Views

Author

Paul D. Hanna, Jan 13 2012

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 6*x^3 + 19*x^4 + 30*x^5 + 120*x^6 + 170*x^7 + ... where A(x) = x/(1-2*x-x^2) + x^2/(1-6*x^2+x^4) + x^3/(1-14*x^3-x^6) + x^4/(1-34*x^4+x^8) + x^5/(1-82*x^5-x^10) + x^6/(1-198*x^6+x^12) + ... + x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Fibonacci[n, 2] * DivisorSum[n, 1/Fibonacci[#, 2] &]; Array[a, 32] (* Amiram Eldar, Aug 18 2023 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=Pell(n) * sumdiv(n, d, 1/Pell(d))}
    
  • PARI
    /* G.f. using companion Pell numbers: */
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(sum(m=1, n, x^m/(1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))), n)}

Formula

G.f.: Sum_{n>=1} x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203 is the companion Pell numbers.

A204059 a(n) = Pell(n) * Sum_{d|n} (-1)^(n/d) / Pell(d), where Pell(n) = A000129(n).

Original entry on oeis.org

1, -1, 6, -17, 30, -48, 170, -645, 1183, -1270, 5742, -22604, 33462, -40868, 240756, -746637, 1136690, -1884529, 6625110, -23217030, 46565244, -46627416, 225058682, -975425316, 1356970471, -1583502622, 9182205852, -26257649200, 44560482150, -77433044928
Offset: 1

Views

Author

Paul D. Hanna, Jan 13 2012

Keywords

Examples

			G.f.: A(x) = x - x^2 + 6*x^3 - 17*x^4 + 30*x^5 - 48*x^6 + 170*x^7 +...
where A(x) = x/(1+2*x-x^2) + x^2/(1+6*x^2+x^4) + x^3/(1+14*x^3-x^6) + x^4/(1+34*x^4+x^8) + x^5/(1+82*x^5-x^10) + x^6/(1+198*x^6+x^12) +...+ x^n/(1 + A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=Pell(n) * sumdiv(n, d, -(-1)^(n/d)/Pell(d))}
    
  • PARI
    /* G.f. using companion Pell numbers: */
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(sum(m=1, n, x^m/(1 + A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))), n)}

Formula

G.f.: Sum_{n>=1} x^n/(1 + A002203(n)*x^n + (-1)^n*x^(2*n)) where A002203 is the companion Pell numbers.
a(2*n-1) = A203797(2*n-1).
Showing 1-4 of 4 results.