A111076 Smallest positive number of maximal order mod n.
1, 1, 2, 3, 2, 5, 3, 3, 2, 3, 2, 5, 2, 3, 2, 3, 3, 5, 2, 3, 2, 7, 5, 5, 2, 7, 2, 3, 2, 7, 3, 3, 2, 3, 2, 5, 2, 3, 2, 3, 6, 5, 3, 3, 2, 5, 5, 5, 3, 3, 5, 7, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 7, 5, 5, 5, 2, 3, 2, 7, 3, 3, 2, 7, 2, 5, 3, 3, 2, 3, 3, 7, 2, 3, 11, 5, 2, 5, 5, 3, 2, 3
Offset: 1
Examples
a(6)=5 because order of 1 is 1 and 2 through 4 are not relatively prime to 6, but 5 has order 2, which is the maximum possible.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[Min[ Select[Range[n], CoprimeQ[#, n] && MultiplicativeOrder[#, n] == CarmichaelLambda[n] &]], {n, 1, 100}] (* Geoffrey Critzer, Jan 04 2015 *)
-
PARI
a(n)=if(n==1, return(1)); if(n<5,return(n-1)); my(o=lcm(znstar(n)[2]),k=1); while(gcd(k++,n)>1 || znorder(Mod(k,n))
Charles R Greathouse IV, Jul 31 2013
Formula
a(n) = A229708(n) if and only if a(n) is prime. - Jonathan Sondow, May 17 2017