A329538 Odd composite numbers k such that A111076(k)^((k-1)/2) == -1 (mod k).
29341, 1152271, 5481451, 14913991, 15247621, 36765901, 133800661, 178482151, 299736181, 579606301, 652969351, 702683101, 739444021, 743404663, 775368901, 3215031751, 4340265931, 5871134179, 8657319259, 9293756581, 12191597551, 13734086221, 14386156093, 19331388805
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Claude Goutier)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- Index entries for sequences related to Carmichael numbers.
Programs
-
Mathematica
f[1, lam_] = 1; f[n_, lam_] := If[n < 5, n - 1, Module[{k = 1}, While[GCD[k, n] > 1 || MultiplicativeOrder[k, n] < lam, k++]; k]]; aQ[n_] := CompositeQ[n] && Divisible[n - 1 , (lam = CarmichaelLambda[n])] && PowerMod[f[n, lam], (n - 1)/2, n] == n - 1; Select[Range[1, 6*10^6, 2], aQ] (* after the Charles R Greathouse IV at A111076 *)
Comments