A111080 Sum of numbers under a triangle on a spiral staircase of width 10.
11, 44, 110, 220, 385, 616, 924, 1320, 1815, 2420, 3146, 4004, 5005, 6160, 7480, 8976, 10659, 12540, 14630, 16940, 19481, 22264, 25300, 28600, 32175, 36036, 40194, 44660, 49445, 54560, 60016, 65824, 71995, 78540, 85470, 92796, 100529, 108680, 117260
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Duncan Keith, Number stairs
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Maple
A111080:=n->(11*(1+n)*(2+n)*(3+n))/6; seq(A111080(n), n=0..50); # Wesley Ivan Hurt, Apr 03 2014
-
Mathematica
Table[(11 (1 + n) (2 + n) (3 + n))/6, {n, 0, 50}] (* Wesley Ivan Hurt, Apr 03 2014 *) LinearRecurrence[{4,-6,4,-1},{11,44,110,220},40] (* Harvey P. Dale, Dec 22 2023 *)
-
PARI
a(n)=11*n*(n^2+3*n+2)/6 \\ Charles R Greathouse IV, Jun 22 2013
-
PARI
Vec(11/(x-1)^4 + O(x^100)) \\ Colin Barker, Apr 03 2014
Formula
a(n) = 11n(n^2 + 3n + 2)/6. - Charles R Greathouse IV, Jun 22 2013
From Colin Barker, Apr 03 2014: (Start)
a(n) = (11*(1+n)*(2+n)*(3+n))/6.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
G.f.: 11 / (x-1)^4. (End).
Extensions
Entry rewritten by Sophia Greathouse and Charles R Greathouse IV, Jun 22 2013
Comments