A111132 a(n+1) = a(n) + (a(n) - a(n-1) + a(n) mod 10) mod 10 with a(0)=0 and a(1)=1.
1, 3, 8, 11, 15, 24, 27, 27, 34, 35, 41, 48, 53, 61, 70, 79, 87, 92, 99, 105, 106, 113, 113, 116, 125, 129, 132, 137, 139, 140, 141, 143, 148, 151, 155, 164, 167, 167, 174, 175, 181, 188, 193, 201, 210, 219, 227, 232, 239, 245, 246, 253, 253, 256, 265, 269, 272
Offset: 0
Examples
Write the digit string 0123456789 and repeat it infinitely many times. Then, starting from the first "1" digit on the left side, move right by one digit (to the digit "2"), then take the sum 1+2=3. Now move right by 3 digits (the result of the previous sum). We are at the digit "5"; then make the sum 3+5=8. Repeating the process we get 1, 3, 8, 11, 15, 24, 27, 27, 34, ....
Programs
-
Maple
ANM:=proc(N) global anplus1,anminus1; local an,i,anpolus; anminus1:=0; an:=1; print (an); for i from 2 by 1 to N do anplus1:=an+((an-anminus1+ an mod 10) mod 10); print(anplus1); anminus1:=an; an:=anplus1; od; end: ANM(100);
-
Mathematica
nxt[{a_,b_}]:={b,b+Mod[b-a+Mod[b,10],10]}; NestList[nxt,{0,1},60][[All,1]] (* Harvey P. Dale, Nov 22 2018 *)
Comments