cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111096 Partial sums of A137701.

Original entry on oeis.org

16, 232, 59281, 10059281, 4049575228945, 1950244643588320, 30041944445326335483061, 32095019157463691981298869, 142108579247039194637916834814494, 108199957883829576141601541930838816381470, 118558455387984539329682688832638841343258239487
Offset: 1

Views

Author

Jonathan Vos Post, Oct 13 2005

Keywords

Comments

a(n) is prime for n = 3, 4, ..., a(n) is semiprime for n = 7, 8, 11, ...

Examples

			a(1) = 16 because semiprime(1)^prime(1) = 4^2 = 16.
a(2) = 232 because 4^2 + 6^3 = 232.
a(3) = 59281 = 4^2 + 6^3 + 9^5, which is a prime.
a(4) = 10059281 = 4^2 + 6^3 + 9^5 + 10^7, which is a prime.
a(7) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 = 428081461 * 70178102025601, which is semiprime.
a(8) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 + 22^19 = 47 * 682872748031142382580827, which is semiprime.
a(11) = 4^2 + 6^3 + 9^5 + 10^7 + 14^11 + 15^13 + 21^17 + 22^19 + 25^23 + 26^29 + 33^31 = 17 * 6974026787528502313510746401919931843721072911 which is semiprime.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A001358(i)^A000040(i).