cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A090205 a(n) = n^n * (n+1)^(n+1).

Original entry on oeis.org

1, 4, 108, 6912, 800000, 145800000, 38423222208, 13816758796288, 6499837226778624, 3874204890000000000, 2853116706110000000000, 2543867514227405321404416, 2700464873652770753916960768, 3365550251744726983606907650048, 4865879898782263021500000000000000
Offset: 0

Views

Author

Philip Newton, Jan 22 2004

Keywords

Comments

I was made aware of this sequence by M. Frazer.
These are the denominators of the rapidly converging approximation to e given by (n+2)^(n+2)/(n+1)^(n+1) - (n+1)^(n+1)/n^n (see A111130). - Harlan J. Brothers, Aug 25 2023

Examples

			a(4) = 4^4 * 5^5 = 256 * 3125 = 800000.
		

Crossrefs

Programs

  • Mathematica
    Table[n^n (n+1)^(n+1),{n,20}] (* Harvey P. Dale, May 29 2016 *)
    Denominator[Table[(n + 2)^(n + 2)/(n + 1)^(n + 1) - (n + 1)^(n + 1)/n^n, {n, 20}]] (* Harlan J. Brothers, Aug 25 2023 *)
    Join[{1},Times@@@Partition[Table[n^n,{n,20}],2,1]] (* Harvey P. Dale, Feb 04 2024 *)
  • Maxima
    A090205[n]:=n^n*(n+1)^(n+1)$ makelist(A090205[n],n,1,30); /* Martin Ettl, Oct 29 2012 */

Formula

a(n) = A000312(n) * A000312(n+1).
a(n) ~ e^(1 + 1/(2*n)) * n^(2*n+1). - Harlan J. Brothers, Aug 25 2023

Extensions

More terms from Harlan J. Brothers, Aug 25 2023
Showing 1-1 of 1 results.