A111212 Number of distinct integers d(pi), where pi ranges over all partitions of n into distinct parts and d(pi) = sum of squares of parts of pi.
1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 12, 12, 18, 20, 23, 27, 35, 32, 46, 48, 55, 59, 79, 74, 94, 101, 110, 127, 144, 134, 172, 180, 189, 205, 235, 237, 266, 282, 303, 323, 352, 346, 391, 403, 436, 453, 497, 492, 547, 555, 596, 606, 661, 670, 724, 741, 775, 806, 861
Offset: 0
Examples
The 8 partitions of 9 into distinct parts have these sums of squares: 81, 65, 53, 45, 41, 41, 35, 29, where 41 = 6^2 + 2^2 + 1^2 = 5^2 + 4^2, so that a(9) = 7. - _Clark Kimberling_, Apr 13 2014
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500 (first 301 terms from Joerg Arndt)
Programs
-
Maple
seq(`if`(m=2, 1, nops(simplify(coeff(series(mul(1+x^(k^2)*y^k, k=1..61), y, 61), y, m)))), m=0..60); # second Maple program: b:= proc(n, i) option remember; `if`(i*(i+1)/2
x+i^2, b(n-i, min(n-i, i-1)))[]})) end: a:= n-> nops(b(n$2)): seq(a(n), n=0..65); # Alois P. Heinz, Apr 18 2019 -
Mathematica
z = 40; g[n_] := n^2; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Map[Length, Map[Union, Table[Total[Map[g, q[n][[k]]]], {n, 1, z}, {k, 1, PartitionsQ[n]}]]] (* Clark Kimberling, Apr 13 2014 *) terms = 60; s = (Product[1+x^k^2*y^k, {k, terms}] + O[y]^terms) + O[x]^terms^2; Join[{1, 1}, Length /@ CoefficientList[s, y][[3 ;; terms]]] (* Jean-François Alcover, Jan 29 2018, adapted from Maple *)
Extensions
Corrected term a(2), Joerg Arndt, Apr 18 2019