cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111212 Number of distinct integers d(pi), where pi ranges over all partitions of n into distinct parts and d(pi) = sum of squares of parts of pi.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 12, 12, 18, 20, 23, 27, 35, 32, 46, 48, 55, 59, 79, 74, 94, 101, 110, 127, 144, 134, 172, 180, 189, 205, 235, 237, 266, 282, 303, 323, 352, 346, 391, 403, 436, 453, 497, 492, 547, 555, 596, 606, 661, 670, 724, 741, 775, 806, 861
Offset: 0

Views

Author

Vladeta Jovovic, Oct 25 2005

Keywords

Examples

			The 8 partitions of 9 into distinct parts have these sums of squares:  81, 65, 53, 45, 41, 41, 35, 29, where 41 = 6^2 + 2^2 + 1^2 = 5^2 + 4^2, so that a(9) = 7. - _Clark Kimberling_, Apr 13 2014
		

Crossrefs

Programs

  • Maple
    seq(`if`(m=2, 1, nops(simplify(coeff(series(mul(1+x^(k^2)*y^k, k=1..61), y, 61), y, m)))), m=0..60);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2x+i^2, b(n-i, min(n-i, i-1)))[]}))
        end:
    a:= n-> nops(b(n$2)):
    seq(a(n), n=0..65); # Alois P. Heinz, Apr 18 2019
  • Mathematica
    z = 40; g[n_] := n^2; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Map[Length, Map[Union, Table[Total[Map[g, q[n][[k]]]], {n, 1, z}, {k, 1, PartitionsQ[n]}]]] (* Clark Kimberling, Apr 13 2014 *)
    terms = 60; s = (Product[1+x^k^2*y^k, {k, terms}] + O[y]^terms) + O[x]^terms^2; Join[{1, 1}, Length /@ CoefficientList[s, y][[3 ;; terms]]] (* Jean-François Alcover, Jan 29 2018, adapted from Maple *)

Extensions

Corrected term a(2), Joerg Arndt, Apr 18 2019