A111220 d_10(n), tau_10(n), number of ordered factorizations of n as n = rstuvwxyza (10-factorizations).
1, 10, 10, 55, 10, 100, 10, 220, 55, 100, 10, 550, 10, 100, 100, 715, 10, 550, 10, 550, 100, 100, 10, 2200, 55, 100, 220, 550, 10, 1000, 10, 2002, 100, 100, 100, 3025, 10, 100, 100, 2200, 10, 1000, 10, 550, 550, 100, 10, 7150, 55, 550, 100, 550, 10, 2200, 100
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Enrique Pérez Herrero)
- Adolf Piltz, Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst, Doctoral Dissertation, Friedrich-Wilhelms-Universität zu Berlin, 1881; the k-th Piltz function tau_k(n) is denoted by phi(n,k) and its recurrence and Dirichlet series appear on p. 6.
Crossrefs
Programs
-
Mathematica
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 10], {n, 55}] (* Robert G. Wilson v, Nov 02 2005 *) tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 10], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
-
PARI
for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,x,numdiv(x))))))))),","))
-
PARI
a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+9, 9)) \\ Charles R Greathouse IV, Oct 28 2017
Formula
G.f.: Sum_{k>=1} tau_9(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+9,9). - Amiram Eldar, Sep 13 2020