cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A077592 Table by antidiagonals of tau_k(n), the k-th Piltz function (see A007425), or n-th term of the sequence resulting from applying the inverse Möbius transform (k-1) times to the all-ones sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 9, 2, 1, 1, 8, 7, 21, 5, 16, 3, 4, 1, 1, 9, 8, 28, 6, 25, 4, 10, 3, 1, 1, 10, 9, 36, 7, 36, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 49, 6, 35, 10, 9, 2, 1, 1, 12, 11, 55, 9, 64, 7, 56, 15, 16, 3, 6, 1
Offset: 1

Views

Author

Henry Bottomley, Nov 08 2002

Keywords

Comments

As an array with offset n=0, k=1, also the number of length n chains of divisors of k. - Gus Wiseman, Aug 04 2022

Examples

			T(6,3) = 9 because we have: 1*1*6, 1*2*3, 1*3*2, 1*6*1, 2*1*3, 2*3*1, 3*1*2, 3*2*1, 6*1*1. - _Geoffrey Critzer_, Feb 16 2015
From _Gus Wiseman_, May 03 2021: (Start)
Array begins:
       k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
  n=0:  1   1   1   1   1   1   1   1
  n=1:  1   2   2   3   2   4   2   4
  n=2:  1   3   3   6   3   9   3  10
  n=3:  1   4   4  10   4  16   4  20
  n=4:  1   5   5  15   5  25   5  35
  n=5:  1   6   6  21   6  36   6  56
  n=6:  1   7   7  28   7  49   7  84
  n=7:  1   8   8  36   8  64   8 120
  n=8:  1   9   9  45   9  81   9 165
The triangular form T(n,k) = A(n-k,k) gives the number of length n - k chains of divisors of k. It begins:
  1
  1  1
  1  2  1
  1  3  2  1
  1  4  3  3  1
  1  5  4  6  2  1
  1  6  5 10  3  4  1
  1  7  6 15  4  9  2  1
  1  8  7 21  5 16  3  4  1
  1  9  8 28  6 25  4 10  3  1
  1 10  9 36  7 36  5 20  6  4  1
  1 11 10 45  8 49  6 35 10  9  2  1
(End)
		

Crossrefs

Columns include (with multiplicity and some offsets) A000012, A000027, A000027, A000217, A000027, A000290, A000027, A000292, A000217, A000290, A000027, A002411, A000027, A000290, A000290, A000332 etc.
Cf. A077593.
Row n = 2 of the array is A007425.
Row n = 3 of the array is A007426.
Row n = 4 of the array is A061200.
The diagonal n = k of the array (central column of the triangle) is A163767.
The transpose of the array is A334997.
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291(n,k) counts divisors of n with k prime factors (with multiplicity).
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.

Programs

  • Maple
    with(numtheory):
    A:= proc(n,k) option remember; `if`(k=1, 1,
          add(A(d, k-1), d=divisors(n)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..14);  # Alois P. Heinz, Feb 25 2015
  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[tau[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten (* Robert G. Wilson v *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#] + k - 1, k - 1] & /@ FactorInteger[n]); Table[tau[k, n - k + 1], {n, 1, 13}, {k, 1, n}] // Flatten (* Amiram Eldar, Sep 13 2020 *)
    Table[Length[Select[Tuples[Divisors[k],n-k],And@@Divisible@@@Partition[#,2,1]&]],{n,12},{k,1,n}] (* TRIANGLE, Gus Wiseman, May 03 2021 *)
    Table[Length[Select[Tuples[Divisors[k],n-1],And@@Divisible@@@Partition[#,2,1]&]],{n,6},{k,6}] (* ARRAY, Gus Wiseman, May 03 2021 *)

Formula

If n = Product_i p_i^e_i, then T(n,k) = Product_i C(k+e_i-1, e_i). T(n,k) = Sum_d{d|n} T(n-1,d) = A077593(n,k) - A077593(n-1,k).
Columns are multiplicative.
Dirichlet g.f. for column k: Zeta(s)^k. - Geoffrey Critzer, Feb 16 2015
A(n,k) = A334997(k,n). - Gus Wiseman, Aug 04 2022

Extensions

Typo in formula fixed by Geoffrey Critzer, Feb 16 2015

A163767 a(n) = tau_{n}(n) = number of ordered n-factorizations of n.

Original entry on oeis.org

1, 2, 3, 10, 5, 36, 7, 120, 45, 100, 11, 936, 13, 196, 225, 3876, 17, 3078, 19, 4200, 441, 484, 23, 62400, 325, 676, 3654, 11368, 29, 27000, 31, 376992, 1089, 1156, 1225, 443556, 37, 1444, 1521, 459200, 41, 74088, 43, 43560, 46575, 2116, 47, 11995200, 1225
Offset: 1

Views

Author

Paul D. Hanna, Aug 04 2009

Keywords

Comments

Also the number of length n - 1 chains of divisors of n. - Gus Wiseman, May 07 2021

Examples

			Successive Dirichlet self-convolutions of the all 1's sequence begin:
(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... (A000012)
1,(2),2,3,2,4,2,4,3,4,2,6,2,4,4,5,... (A000005)
1,3,(3),6,3,9,3,10,6,9,3,18,3,9,9,15,... (A007425)
1,4,4,(10),4,16,4,20,10,16,4,40,4,16,16,35,... (A007426)
1,5,5,15,(5),25,5,35,15,25,5,75,5,25,25,70,... (A061200)
1,6,6,21,6,(36),6,56,21,36,6,126,6,36,36,126,... (A034695)
1,7,7,28,7,49,(7),84,28,49,7,196,7,49,49,210,... (A111217)
1,8,8,36,8,64,8,(120),36,64,8,288,8,64,64,330,... (A111218)
1,9,9,45,9,81,9,165,(45),81,9,405,9,81,81,495,... (A111219)
1,10,10,55,10,100,10,220,55,(100),10,550,10,100,... (A111220)
1,11,11,66,11,121,11,286,66,121,(11),726,11,121,... (A111221)
1,12,12,78,12,144,12,364,78,144,12,(936),12,144,... (A111306)
...
where the main diagonal forms this sequence.
From _Gus Wiseman_, May 07 2021: (Start)
The a(1) = 1 through a(5) = 5 chains of divisors:
  ()  (1)  (1/1)  (1/1/1)  (1/1/1/1)
      (2)  (3/1)  (2/1/1)  (5/1/1/1)
           (3/3)  (2/2/1)  (5/5/1/1)
                  (2/2/2)  (5/5/5/1)
                  (4/1/1)  (5/5/5/5)
                  (4/2/1)
                  (4/2/2)
                  (4/4/1)
                  (4/4/2)
                  (4/4/4)
(End)
		

Crossrefs

Main diagonal of A077592.
Diagonal n = k + 1 of the array A334997.
The version counting all multisets of divisors (not just chains) is A343935.
A000005 counts divisors.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts nonempty strict chains of divisors of n.
A251683/A334996 count strict nonempty length-k divisor chains from n to 1.
A337255 counts strict length-k chains of divisors starting with n.
A339564 counts factorizations with a selected factor.
A343662 counts strict length-k chains of divisors (row sums: A337256).
Cf. A060690.

Programs

  • Mathematica
    Table[Times@@(Binomial[#+n-1,n-1]&/@FactorInteger[n][[All,2]]),{n,1,50}] (* Enrique Pérez Herrero, Dec 25 2013 *)
  • PARI
    {a(n,m=n)=if(n==1,1,if(m==1,1,sumdiv(n,d,a(d,1)*a(n/d,m-1))))}
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A163767(n): return prod(comb(n+e-1,e) for e in factorint(n).values()) # Chai Wah Wu, Jul 05 2024

Formula

a(p) = p for prime p.
a(n) = n^k when n is the product of k distinct primes (conjecture).
a(n) = n-th term of the n-th Dirichlet self-convolution of the all 1's sequence.
a(2^n) = A060690(n). - Alois P. Heinz, Jun 12 2024

A341836 Dirichlet g.f.: 1 / zeta(s)^10.

Original entry on oeis.org

1, -10, -10, 45, -10, 100, -10, -120, 45, 100, -10, -450, -10, 100, 100, 210, -10, -450, -10, -450, 100, 100, -10, 1200, 45, 100, -120, -450, -10, -1000, -10, -252, 100, 100, 100, 2025, -10, 100, 100, 1200, -10, -1000, -10, -450, -450, 100, -10, -2100, 45, -450, 100, -450
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A111220.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[10, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 52}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^10)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(10, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_10(n/d) * a(d).

A111221 d_11(n), tau_11(n), number of ordered factorizations of n as n = rstuvwxyzab (11-factorizations).

Original entry on oeis.org

1, 11, 11, 66, 11, 121, 11, 286, 66, 121, 11, 726, 11, 121, 121, 1001, 11, 726, 11, 726, 121, 121, 11, 3146, 66, 121, 286, 726, 11, 1331, 11, 3003, 121, 121, 121, 4356, 11, 121, 121, 3146, 11, 1331, 11, 726, 726, 121, 11, 11011, 66, 726, 121, 726, 11, 3146, 121
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_1(n): A000012
Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Cf. tau_7(n)...tau_10(n): A111217, A111218, A111219, A111220.
Cf. tau_12(n): A111306.
Column k=11 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 11], {n, 55}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 11], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,q,sumdiv(q,x,numdiv(x)))))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+10, 10)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_10(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+10,10). - Amiram Eldar, Sep 13 2020

A111306 d_12(n), tau_12(n), number of ordered factorizations of n as n = rstuvwxyzabc (12-factorizations).

Original entry on oeis.org

1, 12, 12, 78, 12, 144, 12, 364, 78, 144, 12, 936, 12, 144, 144, 1365, 12, 936, 12, 936, 144, 144, 12, 4368, 78, 144, 364, 936, 12, 1728, 12, 4368, 144, 144, 144, 6084, 12, 144, 144, 4368, 12, 1728, 12, 936, 936, 144, 12, 16380, 78, 936, 144, 936, 12, 4368, 144
Offset: 1

Views

Author

Gerald McGarvey, Nov 02 2005

Keywords

Crossrefs

Column k=12 of A077592.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1, 1,
          add(b(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= n-> b(n, 12):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jun 12 2024
  • Mathematica
    tau[k_,1]:=1; tau[k_,n_]:=Times@@(Binomial[#+k-1,k-1]&/@FactorInteger[n][[All,2]]); Table[tau[12,n],{n,1000}] (* Enrique Pérez Herrero, Jan 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,q,sumdiv(q,r,sumdiv(r,x,numdiv(x))))))))))),","))
    
  • PARI
    a(n,f=factor(n))=f=f[,2]; prod(i=1,#f, binomial(f[i]+11, 11)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_11(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+11,11). - Amiram Eldar, Sep 13 2020

A327774 Composite numbers m such that tau_k(m) = m for some k, where tau_k is the k-th Piltz divisor function (A077592).

Original entry on oeis.org

18, 36, 75, 100, 200, 224, 225, 441, 560, 1183, 1344, 1920, 3025, 8281, 26011, 34606, 64009, 72030, 76895, 115351, 197173, 280041, 494209, 538265, 1168561, 1947271, 2927521, 3575881, 3613153, 3780295, 4492125, 7295401, 10665331, 11580409, 12511291, 13476375, 15381133
Offset: 1

Views

Author

Amiram Eldar, Sep 25 2019

Keywords

Comments

The prime numbers are excluded from this sequence since tau_p(p) = p for all primes p.
The corresponding values of k are 3, 3, 5, 4, 4, 4, 5, 6, 4, 13, 4, 4, 10, 13, 37, 11, 22, 7, 13, 61, 73, 17, 37, 13, 46, 157, 58, 61, 193, 29, 9, 73, 277, 82, 37, 9, 313, ...

Examples

			18 is in the sequence since tau_3(18) = A007425(18) = 18.
		

Crossrefs

Programs

  • Mathematica
    fun[e_, k_] := Times @@ (Binomial[# + k - 1, k - 1] & /@ e); tau[n_, k_] := fun[ FactorInteger[n][[;; , 2]], k]; aQ[n_] := CompositeQ[n] && Module[{k = 2}, While[(t = tau[n, k]) < n, k++]; t == n]; Select[Range[10^5], aQ]
Showing 1-6 of 6 results.