A111273 a(n) is the smallest divisor of triangular number T(n) := n(n+1)/2 not already in the sequence.
1, 3, 2, 5, 15, 7, 4, 6, 9, 11, 22, 13, 91, 21, 8, 17, 51, 19, 10, 14, 33, 23, 12, 20, 25, 27, 18, 29, 87, 31, 16, 24, 187, 35, 30, 37, 703, 39, 26, 41, 123, 43, 86, 45, 69, 47, 94, 28, 49, 75, 34, 53, 159, 55, 44, 38, 57, 59, 118, 61, 1891, 63, 32, 40, 65, 67, 134, 46, 105
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Enrique Navarrete, Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
Crossrefs
Programs
-
Maple
S:= {}: for n from 1 to 1000 do A111273[n]:= min(numtheory:-divisors(n*(n+1)/2) minus S); S:= S union {A111273[n]}; od: seq(A111273[n],n=1..1000); # Robert Israel, Jan 16 2019
-
Mathematica
a[n_] := a[n] = Do[If[FreeQ[Array[a, n-1], d], Return[d]], {d, Divisors[n (n+1)/2]}]; Array[a, 100] (* Jean-François Alcover, Mar 22 2019 *)
-
PARI
{m=69; v=Set([]); for(n=1,m,d=divisors(n*(n+1)/2); j=1; while(setsearch(v,d[j])>0,j++); a=d[j]; v=setunion(v,Set(a)); print1(a,","))} \\ Klaus Brockhaus, Nov 03 2005
-
Sage
def A111273list(upto): A = [] for n in (1..upto): D = divisors((n*(n+1)/2)) A.append(next(d for d in D if d not in A)) return A print(A111273list(69)) # Peter Luschny, Jul 26 2019
Extensions
More terms from Klaus Brockhaus, Nov 03 2005
Comments