A111281 Number of permutations avoiding the patterns {2413,2431,4213,3412,3421,4231,4321,4312}; number of strong sorting class based on 2413.
1, 1, 2, 6, 16, 40, 100, 252, 636, 1604, 4044, 10196, 25708, 64820, 163436, 412084, 1039020, 2619764, 6605420, 16654772, 41993004, 105880308, 266964460, 673118772, 1697188012, 4279255412, 10789627756, 27204748468, 68593500716, 172950260724, 436073277676
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2490
- M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb. 12 (2005) R31.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns, arXiv:2101.12061 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,2).
Programs
-
Mathematica
a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 3a[n - 1] - 2a[n - 2] + 2a[n - 3]; Table[a[n], {n, 28}] (* Robert G. Wilson v *)
Formula
a(n) = 3*a(n-1)-2*a(n-2)+2*a(n-3).
G.f.: 1+x*(1-x+2*x^2)/(1-3*x+2*x^2-2*x^3). - Colin Barker, Jan 16 2012
Extensions
More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, May 07 2021
Comments