A111306 d_12(n), tau_12(n), number of ordered factorizations of n as n = rstuvwxyzabc (12-factorizations).
1, 12, 12, 78, 12, 144, 12, 364, 78, 144, 12, 936, 12, 144, 144, 1365, 12, 936, 12, 936, 144, 144, 12, 4368, 78, 144, 364, 936, 12, 1728, 12, 4368, 144, 144, 144, 6084, 12, 144, 144, 4368, 12, 1728, 12, 936, 936, 144, 12, 16380, 78, 936, 144, 936, 12, 4368, 144
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Enrique Pérez Herrero)
- Adolf Piltz, Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst, Doctoral Dissertation, Friedrich-Wilhelms-Universität zu Berlin, 1881; the k-th Piltz function tau_k(n) is denoted by phi(n,k) and its recurrence and Dirichlet series appear on p. 6.
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=1, 1, add(b(d, k-1), d=numtheory[divisors](n))) end: a:= n-> b(n, 12): seq(a(n), n=1..55); # Alois P. Heinz, Jun 12 2024
-
Mathematica
tau[k_,1]:=1; tau[k_,n_]:=Times@@(Binomial[#+k-1,k-1]&/@FactorInteger[n][[All,2]]); Table[tau[12,n],{n,1000}] (* Enrique Pérez Herrero, Jan 17 2013 *)
-
PARI
for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,q,sumdiv(q,r,sumdiv(r,x,numdiv(x))))))))))),","))
-
PARI
a(n,f=factor(n))=f=f[,2]; prod(i=1,#f, binomial(f[i]+11, 11)) \\ Charles R Greathouse IV, Oct 28 2017
Formula
G.f.: Sum_{k>=1} tau_11(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+11,11). - Amiram Eldar, Sep 13 2020