cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A173836 Natural numbers n such that the concatenation 1331//n^3 is a prime number.

Original entry on oeis.org

21, 27, 29, 41, 101, 119, 141, 171, 173, 177, 191, 197, 219, 243, 267, 291, 309, 327, 333, 369, 371, 383, 411, 417, 1019, 1049, 1059, 1091, 1157, 1163, 1211, 1311, 1337, 1343, 1359, 1371, 1379, 1409, 1461, 1473, 1481, 1503, 1521, 1593, 1599, 1613, 1637
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 26 2010

Keywords

Comments

Given the cube n^3 with k = A111393(n) decimal digits, we have to check whether the concatenation, 11^3 * 10^k + n^3, is a prime.
The number k of digits that 1331=11^3 is shifted is not a multiple of 3,
because the form a^3+b^3 = (a^2+a*b+b^2) * (a - b) cannot construct a prime.

Examples

			21 is in the sequence because 21^3=9261, and the concatenation is 13319261=prime(868687).
27 is in the sequence because 27^3=19683, and the concatenation is 133119683=prime(7545064).
		

References

  • K. Haase, P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 14 2011 *)

Extensions

Comments sligthly rephrased - R. J. Mathar, Mar 05 2010

A276621 After a(0)=0, each n occurs A261234(n-1) times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2016

Keywords

Comments

Auxiliary function for computing A276622 & A276623.

Crossrefs

After a(0), a(n) differs from A111393(n+1) for the first time at n=46, where a(46)=5, while A111393(47)=6.

Programs

  • Scheme
    (define (A276621 n) (let loop ((k 0)) (if (>= (A261233 k) n) k (loop (+ 1 k)))))

A338433 Values of n for which A070939(n^3) differs from A004221(n).

Original entry on oeis.org

1, 20, 40, 80, 101, 126, 127, 159, 160, 161, 200, 201, 202, 203, 252, 253, 254, 255, 317, 318, 319, 320, 321, 322, 399, 400, 401, 402, 403, 404, 405, 406, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645
Offset: 1

Views

Author

Jeremy Gardiner, Oct 27 2020

Keywords

Comments

Sequence gives the values of n for which the length of the binary representation of n^3 differs from ceiling(10*log_10(n)) rounded up.
The largest number not in the sequence is 158489319246111348520210137339 = floor(10^29.2). - Robert Israel, Oct 27 2020

Crossrefs

Programs

  • Maple
    filter:= n -> evalb(ilog2(n^3)+1 <> ceil(10*log[10](n))):
    select(filter, [$1..1000]); # Robert Israel, Oct 27 2020
  • Mathematica
    Select[Range[1000], IntegerLength[#^3, 2] != Ceiling[10*Log10[#]] &] (* Amiram Eldar, Oct 27 2020 *)
Showing 1-3 of 3 results.