A111418 Right-hand side of odd-numbered rows of Pascal's triangle.
1, 3, 1, 10, 5, 1, 35, 21, 7, 1, 126, 84, 36, 9, 1, 462, 330, 165, 55, 11, 1, 1716, 1287, 715, 286, 78, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 92378, 75582, 50388
Offset: 0
Examples
From _Wolfdieter Lang_, Aug 05 2014: (Start) The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 3 1 2: 10 5 1 3: 35 21 7 1 4: 126 84 36 9 1 5: 462 330 165 55 11 1 6: 1716 1287 715 286 78 13 1 7: 6435 5005 3003 1365 455 105 15 1 8: 24310 19448 12376 6188 2380 680 136 17 1 9: 92378 75582 50388 27132 11628 3876 969 171 19 1 10: 352716 293930 203490 116280 54264 20349 5985 1330 210 21 1 ... Expansion examples (for the Todd polynomials see A084930 and a comment above): (4*x)^2 = 10*Todd(n, 0) + 5*Todd(n, 1) + 1*Todd(n, 2) = 10*1 + 5*(-3 + 4*x) + 1*(5 - 20*x + 16*x^2). (4*x)^3 = 35*1 + 21*(-3 + 4*x) + 7*(5 - 20*x + 16*x^2) + (-7 + 56*x - 112*x^2 +64*x^3)*1. (End) --------------------------------------------------------------------- Production matrix is 3, 1, 1, 2, 1, 0, 1, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1 - _Paul Barry_, Mar 08 2011 Application to odd powers of Fibonacci numbers F, row n=2: F_l^5 = (10*(-1)^(2*(l+1))*F_l + 5*(-1)^(1*(l+1))*F_{3*l} + 1*F_{5*l})/5^2, l >= 0. - _Wolfdieter Lang_, Aug 24 2012
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012.
- A. Nkwanta, A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- Sun, Yidong; Ma, Luping Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
Crossrefs
Programs
-
Haskell
a111418 n k = a111418_tabl !! n !! k a111418_row n = a111418_tabl !! n a111418_tabl = map reverse a122366_tabl -- Reinhard Zumkeller, Mar 14 2014
-
Mathematica
Table[Binomial[2*n+1, n-k], {n,0,10}, {k,0,n}] (* G. C. Greubel, May 22 2017 *) T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
Formula
T(n, k) = C(2*n+1, n-k).
Sum_{k=0..n} T(n, k) = 4^n.
Sum_{k, 0<=k<=n}(-1)^k *T(n,k) = binomial(2*n,n) = A000984(n). - Philippe Deléham, Mar 22 2007
T(n,k) = sum{j=k..n, C(n,j)*2^(n-j)*C(j,floor((j-k)/2))}. - Paul Barry, Jun 06 2007
Sum_{k, k>=0} T(m,k)*T(n,k) = T(m+n,0)= A001700(m+n). - Philippe Deléham, Nov 22 2009
G.f. row polynomials: ((1+x) - (1-x)/sqrt(1-4*z))/(2*(x - (1+x)^2*z))
(see the Riordan property mentioned in a comment above). - Wolfdieter Lang, Aug 05 2014
Comments