A111435 a(n) = Fibonacci(hexanacci(n)).
0, 0, 0, 0, 0, 1, 1, 1, 3, 21, 987, 2178309, 6557470319842, 59425114757512643212875125, 3016128079338728432528443992613633888712980904400501
Offset: 0
Examples
a(0) = Fibonacci(hexanacci(0)) = A000045(A001592(0)) = A000045(0) = 0. a(1) = Fibonacci(hexanacci(1)) = A000045(A001592(1)) = A000045(0) = 0. a(2) = Fibonacci(hexanacci(2)) = A000045(A001592(2)) = A000045(0) = 0. a(3) = Fibonacci(hexanacci(3)) = A000045(A001592(3)) = A000045(0) = 0. a(4) = Fibonacci(hexanacci(4)) = A000045(A001592(4)) = A000045(0) = 0. a(5) = Fibonacci(hexanacci(5)) = A000045(A001592(5)) = A000045(1) = 1. a(6) = Fibonacci(hexanacci(6)) = A000045(A001592(6)) = A000045(1) = 1. a(7) = Fibonacci(hexanacci(7)) = A000045(A001592(7)) = A000045(2) = 1. a(8) = A000045(A001592(8)) = A000045(4) = 3. a(9) = A000045(A001592(9)) = A000045(8) = 21. a(10) = A000045(A001592(10)) = A000045(16) = 987. a(11) = A000045(A001592(11)) = A000045(32) = 2178309. a(12) = A000045(A001592(12)) = A000045(63) = 6557470319842.
Programs
-
Maple
b:= proc(n) option remember; `if`(n<5, 0, `if`(n=5, 1, add(b(n-j), j=1..6))) end: a:= n-> (<<0|1>, <1|1>>^b(n))[1,2]: seq(a(n), n=0..14); # Alois P. Heinz, Aug 09 2018