cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373203 a(n) = minimum k>1 such that n^k contains all distinct decimal digits of n.

Original entry on oeis.org

2, 2, 5, 5, 3, 2, 2, 5, 5, 3, 2, 2, 3, 5, 4, 6, 5, 5, 5, 7, 5, 3, 4, 7, 3, 2, 8, 2, 5, 3, 5, 4, 3, 3, 3, 6, 6, 5, 4, 3, 3, 6, 7, 4, 3, 4, 4, 4, 4, 3, 2, 3, 7, 5, 3, 2, 3, 5, 5, 3, 2, 3, 5, 2, 2, 3, 2, 3, 4, 5, 5, 3, 3, 3, 2, 3, 2, 5, 5, 5, 5
Offset: 0

Views

Author

James C. McMahon, May 27 2024

Keywords

Examples

			For n=12, a(12)=3 because 12^3=1728 contains all decimal digits of n. Compare to A253600(12)=2 because 12^2=144 contains any digit of n.
		

Crossrefs

Programs

  • Mathematica
    seq={}; Do[k=1;Until[ContainsAll[IntegerDigits[n^k],IntegerDigits[n] ],k++];AppendTo[seq,k] ,{n,0,80}];seq
  • PARI
    a(n) = my(k=2, d=Set(digits(n))); while(setintersect(Set(digits(n^k)), d) != d, k++); k; \\ Michel Marcus, Jun 01 2024
  • Python
    from itertools import count
    def a(n):
        s = set(str(n))
        return next(k for k in count(2) if s <= set(str(n**k)))
    print([a(n) for n in range(81)]) # Michael S. Branicky, May 27 2024
    

Formula

A253600(n) <= a(n) <= A045537(n). - Michael S. Branicky, May 28 2024
A111442(n) = n^a(n).

A373337 Records in A045537.

Original entry on oeis.org

2, 5, 11, 14, 26, 28, 31, 50, 58, 59, 71, 72, 98, 107, 148, 166, 170, 172, 173, 211, 221, 223, 546, 549, 601, 616, 704, 716, 884, 1152, 1774, 1826, 1847, 1976, 1980, 2213, 2494, 3561, 4587, 4615, 4691, 5110, 5196, 5790, 5810, 6070, 6198, 6255, 6648, 6655, 6697
Offset: 1

Views

Author

Gonzalo Martínez, Jun 01 2024

Keywords

Comments

A045537(n) is the exponent of the least perfect power of n containing n as a substring. As n grows, larger integers are recorded.

Examples

			a(1) = A045537(0) = 2.
a(2) = A045537(2) = 5.
a(3) = A045537(11) = 11.
a(4) = A045537(12) = 14.
a(5) = A045537(15) = 26.
a(6) = A045537(102) = 28.
		

Crossrefs

Extensions

a(33)-a(37) from Michel Marcus, Jun 04 2024
a(38)-a(49) from Michael S. Branicky, Jun 05 2024
a(50)-a(51) from Jinyuan Wang, Jun 17 2025

A373291 Least perfect power of n containing some decimal digit of n.

Original entry on oeis.org

1, 32, 243, 64, 25, 36, 16807, 32768, 729, 100, 121, 144, 169, 196, 225, 256, 4913, 5832, 361, 400, 441, 234256, 529, 13824, 625, 676, 729, 784, 24389, 900, 961, 1024, 35937, 39304, 1225, 1296, 1369, 54872, 59319, 1600
Offset: 1

Views

Author

James C. McMahon, May 30 2024

Keywords

Comments

"Perfect power of n" here means n^k with k>1. The sequence gives the value of n^k, not the value of k. - N. J. A. Sloane, May 31 2024

Examples

			For n=12, 12^2=144 contains digit 1 from n so that a(12) = 144.
		

Crossrefs

Programs

  • Mathematica
    seq={}; Do[k=1;  Until[  ContainsAny[IntegerDigits[n],IntegerDigits[n^k] ],k++  ];AppendTo[seq,n^k] ,{n,40}];seq
  • PARI
    a(n) = my(sd = Set(vecsort(digits(n))), k=2); while (#setintersect(sd, Set(vecsort(digits(n^k)))) == 0, k++); n^k; \\ Michel Marcus, May 31 2024

Formula

a(n) = n^A253600(n).
Showing 1-3 of 3 results.