A111458 Numbers that cannot be represented as the sum of at most three Fibonacci numbers (with repetitions allowed).
33, 46, 51, 53, 54, 67, 72, 74, 75, 80, 82, 83, 85, 86, 87, 88, 101, 106, 108, 109, 114, 116, 117, 119, 120, 121, 122, 127, 129, 130, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 156, 161, 163, 164, 169, 171, 172
Offset: 1
Keywords
Examples
33 is neither a Fibonacci number nor can be written as the sum of two or three Fibonacci numbers.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
Programs
-
Maple
isA111458 := proc(n) # returns true if n is in the sequence local xi,yi,x,y,z ; for xi from 0 do x := A000045(xi) ; if 3*x > n then return true; end if; for yi from xi do y := A000045(yi) ; if x+2*y > n then break; else z := n-x-y ; if isA000045(z) then # see isFib in A000045 return false; end if; end if; end do: end do: end proc: A111458 := proc(n) option remember; local a; if n = 0 then -1; else for a from procname(n-1)+1 do if isA111458(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Sep 09 2015
-
Mathematica
FibQ[n_] := IntegerQ[Sqrt[5n^2+4]] || IntegerQ[Sqrt[5n^2-4]]; P[n_] := IntegerPartitions[n, 3, Select[Range[n], FibQ]]; Select[Range[1000], P[#] == {}&] (* Jean-François Alcover, Jul 20 2023 *)