cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179244 Numbers that have 4 terms in their Zeckendorf representation.

Original entry on oeis.org

33, 46, 51, 53, 54, 67, 72, 74, 75, 80, 82, 83, 85, 86, 87, 101, 106, 108, 109, 114, 116, 117, 119, 120, 121, 127, 129, 130, 132, 133, 134, 137, 138, 139, 141, 156, 161, 163, 164, 169, 171, 172, 174, 175, 176, 182, 184, 185, 187, 188, 189, 192, 193, 194, 196
Offset: 1

Views

Author

Emeric Deutsch, Jul 05 2010

Keywords

Comments

A007895(a(n)) = 4. - Reinhard Zumkeller, Mar 10 2013

Examples

			33=21+8+3+1;
46=34+8+3+1;
51=34+13+3+1;
53=34+13+5+1;
54=34+13+5+2;
		

Crossrefs

Programs

  • Haskell
    a179244 n = a179244_list !! (n-1)
    a179244_list = filter ((== 4) . a007895) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
  • Maple
    with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(9)-1 to 200 do if B(i) = 4 then Q := `union`(Q, {i}) else end if end do: Q;
  • Mathematica
    zeck = DigitCount[Select[Range[2000], BitAnd[#, 2*#] == 0&], 2, 1];
    Position[zeck, 4] // Flatten (* Jean-François Alcover, Jan 25 2018 *)

A135709 Not the sum of three distinct nonzero Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 33, 46, 51, 53, 54, 67, 72, 74, 75, 80, 82, 83, 85, 86, 87, 88, 101, 106, 108, 109, 114, 116, 117, 119, 120, 121, 122, 127, 129, 130, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 156, 161, 163, 164, 169, 171, 172, 174, 175, 176, 177, 182, 184, 185
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2008

Keywords

Crossrefs

Complement of A135558.

Programs

  • Maple
    # needs isA135558 from A135558
    A135709 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if not isA135558(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 09 2015
  • Mathematica
    With[{f=15},Complement[Range[Fibonacci[f]],Total/@Subsets[Fibonacci[ Range[ 2,f]],{3}]]] (* Harvey P. Dale, Sep 08 2019 *)

A134561 Array T by antidiagonals: T(n,k) = k-th number whose Zeckendorf representation has exactly n terms.

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 5, 7, 17, 33, 8, 9, 19, 46, 88, 13, 10, 20, 51, 122, 232, 21, 11, 25, 53, 135, 321, 609, 34, 14, 27, 54, 140, 355, 842, 1596, 55, 15, 28, 67, 142, 368, 931, 2206, 4180, 89, 16, 30, 72, 143, 373, 965
Offset: 1

Views

Author

Clark Kimberling, Nov 01 2007

Keywords

Comments

A permutation of the natural numbers.
Except for initial terms in some cases, (Row 1) = A000045 (Row 2) = A095096 (Row 3) = A059390 (Row 4) = A111458 (Col 1) = A027941 (Col 2) = A005592.

Examples

			19 = 13 + 5 + 1 is the 3rd-largest number (after 12 and 17) that has a 3-term Zeckendorf representation; i.e., the (unique) sum of distinct non-neighboring Fibonacci numbers.
Northwest corner:
1 2 3 5 8 13
4 6 7 9 10 11
12 17 19 20 25 27
33 46 51 53 54 67
		

Crossrefs

Cf. A035513.
Showing 1-3 of 3 results.