A111592 Admirable numbers. A number n is admirable if there exists a proper divisor d' of n such that sigma(n)-2d'=2n, where sigma(n) is the sum of all divisors of n.
12, 20, 24, 30, 40, 42, 54, 56, 66, 70, 78, 84, 88, 102, 104, 114, 120, 138, 140, 174, 186, 222, 224, 234, 246, 258, 270, 282, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 582, 606, 618, 642, 644, 650, 654, 672, 678, 762, 786, 812
Offset: 1
Examples
12 = 1+3+4+6-2, 20 = 2+4+5+10-1, etc.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- F. Firoozbakht, M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Giovanni Resta, admirable numbers
- J. M. Sachs, Admirable Numbers and Compatible Pairs, The Arithmetic Teacher, Vol. 7, No. 6 (1960), pp. 293-295.
- T. Trotter, Admirable Numbers
Crossrefs
Programs
-
Maple
with(numtheory); isadmirable := proc(n) local b, d, S; b:=false; S:=divisors(n) minus {n}; for d in S do if sigma(n)-2*d=2*n then b:=true; break fi od; return b; end: select(proc(z) isadmirable(z) end, [$1..1000]); # Walter Kehowski, Aug 12 2005
-
Mathematica
fQ[n_] := Block[{d = Most[Divisors[n]], k = 1}, l = Length[d]; s = Plus @@ d; While[k < l && s - 2d[[k]] > n, k++ ]; If[k > l || s != n + 2d[[k]], False, True]]; Select[ Range[821], fQ[ # ] &] (* Robert G. Wilson v, Aug 13 2005 *) Select[Range[812],MemberQ[Most[Divisors[#]],(DivisorSigma[1,#]-2*#)/2]&] (* Ivan N. Ianakiev, Mar 23 2017 *)
-
PARI
for(n=1,10^3,ap=sigma(n)-2*n;if(ap>0 && (ap%2)==0,d=ap/2;if(d!=n && (n%d)==0, print1(n",")))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008
-
PARI
is(n)=if(issquare(n)||issquare(n/2),0,my(d=sigma(n)/2-n); d>0 && d!=n && n%d==0) \\ Charles R Greathouse IV, Jun 21 2011
Extensions
Better definition from Walter Kehowski, Aug 12 2005
Comments