A111607 Fourth column of A109626.
1, 2, 3, 3, 5, 3, 7, 2, 9, 10, 11, 9, 13, 7, 15, 4, 17, 18, 19, 15, 21, 11, 23, 6, 25, 26, 27, 21, 29, 15, 31, 8, 33, 34, 35, 27, 37, 19, 39, 10, 41, 42, 43, 33, 45, 23, 47, 12, 49, 50, 51, 39, 53, 27, 55, 14, 57, 58, 59, 45, 61, 31, 63, 16, 65, 66, 67, 51, 69, 35, 71, 18, 73, 74, 75
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A109626.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 102); p:= func< x | x*(1+2*x+3*x^2+3*x^3 +5*x^4 +3*x^5 +7*x^6 +2*x^7 +7*x^8 +6*x^9 +5*x^10 +3*x^11 +3*x^12 +x^13 +x^14)/(1-x^8)^2 >; Coefficients(R!( p(x) )); // G. C. Greubel, Jan 29 2025 -
Mathematica
(* First program *) f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 128}]]; g[n_, m_] := f[n][[m]]; Table[g[n, 4 + 1], {n, 75}] (* Second program *) CoefficientList[Series[(1+2*x+3*x^2+3*x^3+5*x^4+3*x^5+7*x^6+2*x^7+7*x^8 +6*x^9+5*x^10+3*x^11+3*x^12+x^13+x^14)/(1-x^8)^2, {x,0,100}], x] (* G. C. Greubel, Jan 29 2025 *)
-
SageMath
def p(x): return x*(1+2*x+3*x^2+3*x^3 +5*x^4 +3*x^5 +7*x^6 +2*x^7 +7*x^8 +6*x^9 +5*x^10 +3*x^11 +3*x^12 +x^13 +x^14) def A111607_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( p(x)/(1-x^8)^2 ).list() a=A111607_list(101); a[1:] # G. C. Greubel, Jan 29 2025
Formula
G.f.: x*(1 + 2*x + 3*x^2 + 3*x^3 + 5*x^4 + 3*x^5 + 7*x^6 + 2*x^7 + 7*x^8 + 6*x^9 + 5*x^10 + 3*x^11 + 3*x^12 + x^13 + x^14)/(1-x^8)^2.