cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111607 Fourth column of A109626.

Original entry on oeis.org

1, 2, 3, 3, 5, 3, 7, 2, 9, 10, 11, 9, 13, 7, 15, 4, 17, 18, 19, 15, 21, 11, 23, 6, 25, 26, 27, 21, 29, 15, 31, 8, 33, 34, 35, 27, 37, 19, 39, 10, 41, 42, 43, 33, 45, 23, 47, 12, 49, 50, 51, 39, 53, 27, 55, 14, 57, 58, 59, 45, 61, 31, 63, 16, 65, 66, 67, 51, 69, 35, 71, 18, 73, 74, 75
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A109626.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 102);
    p:= func< x | x*(1+2*x+3*x^2+3*x^3 +5*x^4 +3*x^5 +7*x^6 +2*x^7 +7*x^8 +6*x^9 +5*x^10 +3*x^11 +3*x^12 +x^13 +x^14)/(1-x^8)^2 >;
    Coefficients(R!( p(x) )); // G. C. Greubel, Jan 29 2025
    
  • Mathematica
    (* First program *)
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 128}]]; g[n_, m_] := f[n][[m]]; Table[g[n, 4 + 1], {n, 75}]
    (* Second program *)
    CoefficientList[Series[(1+2*x+3*x^2+3*x^3+5*x^4+3*x^5+7*x^6+2*x^7+7*x^8 +6*x^9+5*x^10+3*x^11+3*x^12+x^13+x^14)/(1-x^8)^2, {x,0,100}], x] (* G. C. Greubel, Jan 29 2025 *)
  • SageMath
    def p(x): return x*(1+2*x+3*x^2+3*x^3 +5*x^4 +3*x^5 +7*x^6 +2*x^7 +7*x^8 +6*x^9 +5*x^10 +3*x^11 +3*x^12 +x^13 +x^14)
    def A111607_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( p(x)/(1-x^8)^2 ).list()
    a=A111607_list(101); a[1:] # G. C. Greubel, Jan 29 2025

Formula

G.f.: x*(1 + 2*x + 3*x^2 + 3*x^3 + 5*x^4 + 3*x^5 + 7*x^6 + 2*x^7 + 7*x^8 + 6*x^9 + 5*x^10 + 3*x^11 + 3*x^12 + x^13 + x^14)/(1-x^8)^2.