A111639 Expansion of (3+8*x-3*x^2-2*x^3)/((x^2+4*x+1)*(x^2-2*x-1)).
-3, 10, -33, 114, -403, 1450, -5281, 19394, -71619, 265450, -986241, 3670002, -13670803, 50957770, -190026433, 708824834, -2644492803, 9867263050, -36820012641, 137401810674, -512760729619, 1913577130090, -7141393334881, 26651623320002, -99464199710403
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-6,-8,2,1).
Programs
-
Mathematica
LinearRecurrence[{-6,-8,2,1},{-3,10,-33,114},30] (* Harvey P. Dale, Jul 04 2019 *)
-
PARI
Vec(-(3 + 8*x - 3*x^2 - 2*x^3) / ((1 + 2*x - x^2)*(1 + 4*x + x^2)) + O(x^25)) \\ Colin Barker, May 11 2019
Formula
From Colin Barker, May 11 2019: (Start)
a(n) = ((-1-sqrt(2))^(1+n) + (-1+sqrt(2))^(1+n) - 2*(-2-sqrt(3))^n - sqrt(3)*(-2-sqrt(3))^n - 2*(-2+sqrt(3))^n + sqrt(3)*(-2+sqrt(3))^n) / 2.
a(n) = -6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4) for n>3. (End)
Comments