A111663 Expansion of (-1+x^3+x^6+x^9)/((1-x)*(2*x-1)*(x^2+1)*(x^2+x+1)*(x^4-x^2+1)).
1, 2, 4, 8, 16, 32, 62, 124, 248, 494, 988, 1976, 3952, 7904, 15808, 31616, 63232, 126464, 252926, 505852, 1011704, 2023406, 4046812, 8093624, 16187248, 32374496, 64748992, 129497984, 258995968, 517991936, 1035983870, 2071967740
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,1,-2,0,-1,2,0,1,-2).
Crossrefs
Cf. A111662.
Programs
-
Mathematica
CoefficientList[Series[(-1+x^3+x^6+x^9)/((1-x)(2x-1)(x^2+1)*(x^2+x+1)(x^4-x^2+1)),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,1,-2,0,-1,2,0,1,-2},{1,2,4,8,16,32,62,124,248,494},40] (* Harvey P. Dale, May 04 2012 *)
-
PARI
Vec((-1+x^3+x^6+x^9)/((1-x)*(2*x-1)*(x^2+1)*(x^2+x+1)*(x^4-x^2+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
Formula
a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=16, a(5)=32, a(6)=62, a(7)=124, a(8)=248, a(9)=494, a(n) = 2*a(n-1)+a(n-3)-2*a(n-4)-a(n-6)+2*a(n-7)+ a(n-9)- 2*a(n-10). [Harvey P. Dale, May 04 2012]
Comments