cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111663 Expansion of (-1+x^3+x^6+x^9)/((1-x)*(2*x-1)*(x^2+1)*(x^2+x+1)*(x^4-x^2+1)).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 62, 124, 248, 494, 988, 1976, 3952, 7904, 15808, 31616, 63232, 126464, 252926, 505852, 1011704, 2023406, 4046812, 8093624, 16187248, 32374496, 64748992, 129497984, 258995968, 517991936, 1035983870, 2071967740
Offset: 0

Views

Author

Creighton Dement, Aug 14 2005

Keywords

Comments

Initial terms factored: [1,2,(2)^2,(2)^3,(2)^4,(2)^5,(2) (31),(2)^2 (31),(2)^3 (31),(2) (13) (19),(2)^2 (13) (19),(2)^3 (13) (19),(2)^4 (13) (19),(2)^5 (13) (19),(2)^6 (13) (19),(2)^7 (13) (19),(2)^8 (13) (19),(2)^9 (13) (19),(2) (17) (43) (173),(2)^2 (17) (43) (173),(2)^3 (17) (43) (173),(2) (7)^2 (11) (1877),(2)^2 (7)^2 (11) (1877),(2)^3 (7)^2 (11) (1877),(2)^4 (7)^2 (11) (1877),(2)^5 (7)^2 (11) (1877),(2)^6 (7)^2 (11) (1877),(2)^7 (7)^2 (11) (1877),(2)^8 (7)^2 (11) (1877),(2)^9 (7)^2 (11) (1877)]
Floretion Algebra Multiplication Program, FAMP Code: 2jbaseksumseq[.5'i + .5i' + .5'ii' + .5'jj' + .5'kk' + .5e], sumtype: sum[(Y[0], Y[1], Y[2]),mod(3)

Crossrefs

Cf. A111662.

Programs

  • Mathematica
    CoefficientList[Series[(-1+x^3+x^6+x^9)/((1-x)(2x-1)(x^2+1)*(x^2+x+1)(x^4-x^2+1)),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,1,-2,0,-1,2,0,1,-2},{1,2,4,8,16,32,62,124,248,494},40] (* Harvey P. Dale, May 04 2012 *)
  • PARI
    Vec((-1+x^3+x^6+x^9)/((1-x)*(2*x-1)*(x^2+1)*(x^2+x+1)*(x^4-x^2+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=16, a(5)=32, a(6)=62, a(7)=124, a(8)=248, a(9)=494, a(n) = 2*a(n-1)+a(n-3)-2*a(n-4)-a(n-6)+2*a(n-7)+ a(n-9)- 2*a(n-10). [Harvey P. Dale, May 04 2012]