A111669 Triangle read by rows, based on a simple Fibonacci recursion rule.
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 7, 1, 1, 5, 26, 32, 12, 1, 1, 6, 57, 122, 92, 20, 1, 1, 7, 120, 423, 582, 252, 33, 1, 1, 8, 247, 1389, 3333, 2598, 681, 54, 1, 1, 9, 502, 4414, 18054, 24117, 11451, 1815, 88, 1, 1, 10, 1013, 13744, 94684, 210990, 172980, 49566, 4807, 143, 1
Offset: 0
Examples
Triangle begins 1....1....2....3....5....8...13....F(k+1) 1 1....1 1....2....1 1....3....4....1 1....4...11....7....1 1....5...26...32...12....1 1....6...57..122...92...20....1 For example, T(6,3) = 122 = 26 + 3*32 = T(5,2) + F(4)*T(5,3).
Links
- Michel Marcus, Rows n = 0..20, flattened
Programs
-
Mathematica
(* To generate the triangle *) Grid[RecurrenceTable[{F[n,k] == F[n-1,k-1] + Fibonacci[k+1] F[n-1,k], F[0,k] == KroneckerDelta[k]}, F, {n,0,10}, {k,0,10}]] (* Emanuele Munarini, Dec 05 2017 *)
-
PARI
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1, k-1) + fibonacci(k+1)*T(n-1, k))); \\ Michel Marcus, May 25 2024
Formula
T(n, k) = T(n-1, k-1) + F(k+1)*T(n-1, k) where F(n)=A000045(n).
Column k has g.f. x^k/Product_{j=0..k} (1 - F(j+1)*x).
Extensions
Edited by Paul Barry, Nov 14 2005
Comments