cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111724 Number of partitions of an n-set with an even number of blocks of size 1.

Original entry on oeis.org

0, 2, 1, 11, 21, 117, 428, 2172, 10727, 59393, 345335, 2143825, 14038324, 96834090, 700715993, 5305041715, 41910528809, 344714251149, 2945819805408, 26107419715988, 239556359980239, 2272364911439153, 22252173805170347, 224666265799310801, 2335958333831561032
Offset: 1

Views

Author

Vladeta Jovovic, Nov 17 2005

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,
          `if`(j=1, 1-t, t))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..30);  # Alois P. Heinz, May 10 2016
  • Mathematica
    Rest[ Range[0, 24]! CoefficientList[ Series[ Cosh[x]Exp[Exp[x] - 1 - x], {x, 0, 23}], x]] (* Robert G. Wilson v *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def b(n, t): return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1) for j in range(1, n + 1))
    def a(n): return b(n, 1)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 10 2017

Formula

E.g.f.: cosh(x)*exp(exp(x)-1-x).
More generally, e.g.f. for number of partitions of an n-set with an even number of blocks of size k is cosh(x^k/k!)*exp(exp(x)-1-x^k/k!).

Extensions

More terms from Robert G. Wilson v, Nov 22 2005