cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A111739 Distance between k*(n-th prime) and next prime, k=7 case.

Original entry on oeis.org

3, 2, 2, 4, 2, 6, 8, 4, 2, 8, 6, 4, 6, 6, 2, 2, 6, 4, 10, 2, 10, 4, 6, 8, 4, 2, 6, 2, 6, 6, 18, 2, 8, 4, 6, 4, 4, 10, 2, 2, 6, 10, 24, 10, 2, 6, 4, 6, 8, 4, 6, 20, 6, 2, 2, 6, 6, 4, 10, 6, 6, 2, 4, 2, 12, 2, 16, 12, 8, 4, 2, 8, 10, 6, 4, 2, 6, 10, 12, 16, 6, 6, 2, 6, 6, 8, 20, 4, 2, 10, 2, 6, 4, 12, 6, 6, 8
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Comments

Other cases: k=1 A001223 Differences between consecutive primes, k=2 A059787, k=3 A114245, k=4 A114246, k=5 A114247, k=6 A114248, k=8 A111740, k=9 A111741, k=10 A111742.

Examples

			a(1)=3 because prime(1)=2 and 7*2+1=17 (prime).
		

Crossrefs

Programs

  • Mathematica
    dnp[n_]:=Module[{c=7*Prime[n]},NextPrime[c]-c]; Array[dnp,100] (* Harvey P. Dale, Jan 14 2022 *)

A111740 Distance between k*(n-th prime) and next prime, k=8 case.

Original entry on oeis.org

1, 5, 1, 3, 1, 3, 1, 5, 7, 1, 3, 11, 3, 3, 3, 7, 7, 3, 5, 1, 3, 9, 9, 7, 11, 1, 3, 1, 5, 3, 3, 1, 1, 5, 1, 5, 3, 3, 25, 15, 1, 3, 3, 5, 3, 5, 5, 3, 7, 15, 3, 1, 3, 3, 7, 7, 1, 11, 5, 3, 3, 3, 3, 15, 17, 3, 9, 3, 1, 5, 9, 7, 3, 15, 5, 3, 7, 5, 1, 27, 7, 3, 1, 3, 5, 3, 1, 3, 3, 5, 3, 1, 11, 1, 9, 3, 1, 9, 17
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Comments

Other cases: k=1 A001223 Differences between consecutive primes, k=2 A059787, k=3 A114245, k=4 A114246, k=5 A114247, k=6 A114248, k=7 A111739, k=9 A111741, k=10 A111742.

Examples

			a(1)=1 because prime(1)=2 and 8*2+1=17 (prime).
		

Crossrefs

A111741 Distance between k*(n-th prime) and next prime, k=9 case.

Original entry on oeis.org

1, 2, 2, 4, 2, 10, 4, 2, 4, 2, 2, 4, 4, 2, 8, 2, 10, 8, 4, 2, 2, 8, 4, 8, 4, 2, 2, 4, 2, 2, 8, 2, 4, 8, 20, 2, 10, 4, 8, 2, 2, 8, 2, 4, 4, 10, 2, 4, 10, 2, 2, 2, 10, 8, 20, 4, 2, 2, 10, 2, 2, 10, 4, 2, 2, 4, 20, 4, 14, 22, 4, 20, 4, 2, 2, 2, 10, 8, 4, 10, 8, 4, 2, 10, 16, 2, 8, 14, 4, 10, 8, 16, 8, 2, 2
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Comments

Other cases: k=1 A001223 Differences between consecutive primes, k=2 A059787, k=3 A114245, k=4 A114246, k=5 A114247, k=6 A114248, k=7 A111739, k=8 A111740, k=10 A111742.

Examples

			a(1)=1 because prime(1)=2 and 9*2+1=19 (prime).
		

Crossrefs

A111735 Distance between k*(n-th prime) and next prime, k=3 case.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 8, 4, 2, 8, 10, 10, 4, 2, 2, 2, 2, 4, 2, 10, 4, 8, 2, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 4, 4, 8, 2, 2, 8, 4, 2, 4, 2, 2, 4, 4, 2, 8, 2, 8, 8, 10, 4, 2, 8, 4, 2, 2, 4, 2, 8, 2, 2, 10, 2, 4, 14, 2, 4, 2, 10, 2, 2, 14, 4, 2, 2, 32, 14, 2, 16, 10, 8, 2, 10, 8, 2, 2, 4, 4, 2, 4
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Comments

Other cases: k=1 A001223 Differences between consecutive primes, k=2 A059787, k=4 A111736, k=5 A111737, k=6 A111738, k=7 A111739, k=8 A111740, k=9 A111741, k=10 A111742.

Crossrefs

Programs

  • Mathematica
    NextPrime[3#]-3#&/@Prime[Range[100]] (* Harvey P. Dale, Mar 29 2018 *)

A111736 Distance between k*(n-th prime) and next prime, k=4 case.

Original entry on oeis.org

3, 1, 3, 1, 3, 1, 3, 3, 5, 11, 3, 1, 3, 1, 3, 11, 3, 7, 1, 9, 1, 1, 5, 3, 1, 5, 7, 3, 3, 5, 1, 17, 9, 1, 3, 3, 3, 1, 5, 9, 3, 3, 5, 1, 9, 1, 9, 15, 3, 3, 5, 11, 3, 5, 3, 9, 11, 3, 1, 5, 19, 9, 1, 5, 7, 9, 3, 13, 11, 3, 11, 3, 3, 1, 7, 11, 3, 9, 3, 1, 17, 9, 9, 1, 3, 5, 5, 3, 3, 9, 3, 15, 1, 9, 1, 5, 3, 3, 7
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Comments

Other cases: k=1 A001223 Differences between consecutive primes, k=2 A059787, k=3 A111735, k=5 A111737, k=6 A111738, k=7 A111739, k=8 A111740, k=9 A111741, k=10 A111742.

Examples

			a(1)=3 because prime(1)=2 and 4*2+3=11
(prime).
		

Crossrefs

Programs

  • Mathematica
    dbkn[n_]:=Module[{t=4*Prime[n]},NextPrime[t]-t]; Array[dbkn,100] (* Harvey P. Dale, Nov 12 2014 *)

A111737 Distance between k*(n-th prime) and next prime, k=5 case.

Original entry on oeis.org

1, 2, 4, 2, 4, 2, 4, 2, 12, 4, 2, 6, 6, 8, 4, 4, 12, 2, 2, 4, 2, 2, 4, 4, 2, 4, 6, 6, 2, 4, 6, 4, 6, 6, 6, 2, 2, 6, 4, 12, 12, 2, 12, 2, 6, 2, 6, 2, 16, 6, 6, 6, 8, 4, 4, 4, 16, 6, 14, 4, 8, 6, 8, 4, 2, 12, 2, 8, 6, 2, 12, 6, 12, 2, 6, 16, 4, 2, 6, 8, 4, 6, 6, 14, 8, 6, 6, 2, 4, 18, 4, 4, 2, 4, 8, 6, 4, 4, 2
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Comments

Other cases: k=1 A001223 Differences between consecutive primes, k=2 A059787, k=3 A111735, k=4 A111736, k=6 A111738, k=7 A111739, k=8 A111740, k=9 A111741, k=10 A111742.

Examples

			a(1)=1 because prime(1)=2 and 5*2+1=11
(prime).
		

Crossrefs

Programs

  • Mathematica
    NextPrime[#]-#&/@(5Prime[Range[100]]) (* Harvey P. Dale, Oct 21 2011 *)

A111738 Distance between k*(n-th prime) and next prime, k=6 case.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 13, 1, 5, 5, 1, 5, 5, 1, 13, 5, 1, 7, 5, 1, 5, 1, 7, 5, 1, 1, 1, 5, 5, 7, 1, 1, 5, 13, 1, 5, 5, 7, 1, 13, 1, 5, 5, 5, 7, 11, 23, 5, 7, 1, 5, 1, 5, 1, 1, 5, 1, 1, 7, 1, 1, 5, 1, 1, 5, 1, 5, 1, 5, 11, 7, 1, 1, 7, 11, 5, 1, 5, 5, 7, 5, 5, 11, 13, 1, 5, 7, 1, 11, 1, 5, 5, 7, 5, 1, 7, 11, 25
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Comments

Other cases: k=1 A001223 Differences between consecutive primes, k=2 A059787, k=3 A111735, k=4 A111736, k=5 A111737, k=7 A111739, k=8 A111740, k=9 A111741, k=10 A111742.

Examples

			a(1)=1 because prime(1)=2 and 6*2+1=13
(prime).
		

Crossrefs

Showing 1-7 of 7 results.