cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111825 Triangle P, read by rows, that satisfies [P^6](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(6*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 96, 36, 1, 1, 6306, 3816, 216, 1, 1, 1883076, 1625436, 139536, 1296, 1, 1, 2700393702, 3121837776, 360839016, 5036256, 7776, 1, 1, 19324893252552, 28794284803908, 4200503990976, 78293629296, 181382976, 46656, 1
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Also P(n,k) = the partitions of (6^n - 6^(n-k)) into powers of 6 <= 6^(n-k).

Examples

			Let q=6; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 4/2!*x^2 + 42/3!*x^3 + 7296/4!*x^4 +... (A111829).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(6*x) + m^3/3!*L(x)*L(6*x)*L(6^2*x) +
m^4/4!*L(x)*L(6*x)*L(6^2*x)*L(6^3*x) + ...
Triangle P begins:
1;
1,1;
1,6,1;
1,96,36,1;
1,6306,3816,216,1;
1,1883076,1625436,139536,1296,1;
1,2700393702,3121837776,360839016,5036256,7776,1; ...
where P^6 shifts columns left and up one place:
1;
6,1;
96,36,1;
6306,3816,216,1; ...
		

Crossrefs

Cf. A111826 (column 1), A111827 (row sums), A111828 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111820 (q=5), A111830 (q=7), A111835 (q=8).

Programs

  • PARI
    P(n,k,q=6)=local(A=Mat(1),B);if(n
    				

Formula

Let q=6; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111829).