cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111826 Number of partitions of 5*6^n into powers of 6, also equals column 1 of triangle A111825, which shifts columns left and up under matrix 6th power.

Original entry on oeis.org

1, 6, 96, 6306, 1883076, 2700393702, 19324893252552, 709398600017820522, 136347641698786289641932, 139389318443495655514432423662, 767442745549858935398537400096197328
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Let q=6; a(n) equals the partitions of (q-1)*q^n into powers of q, or, the coefficient of x^((q-1)*q^n) in 1/Product_{j>=0}(1-x^(q^j)).

Crossrefs

Cf. A111825 (triangle), A002577 (q=2), A078124 (q=3), A111817 (q=4), A111821 (q=5), A111831 (q=7), A111836 (q=8).

Programs

  • PARI
    a(n,q=6)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))

Formula

a(n) = [x^(5*6^n)] 1/Product_{j>=0}(1-x^(6^j)).