A111826 Number of partitions of 5*6^n into powers of 6, also equals column 1 of triangle A111825, which shifts columns left and up under matrix 6th power.
1, 6, 96, 6306, 1883076, 2700393702, 19324893252552, 709398600017820522, 136347641698786289641932, 139389318443495655514432423662, 767442745549858935398537400096197328
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
Crossrefs
Programs
-
PARI
a(n,q=6)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
Formula
a(n) = [x^(5*6^n)] 1/Product_{j>=0}(1-x^(6^j)).
Comments