A111827 Number of partitions of 6^n into powers of 6, also equals the row sums of triangle A111825, which shifts columns left and up under matrix 6th power.
1, 2, 8, 134, 10340, 3649346, 6188114528, 52398157106366, 2277627698797283420, 518758596372421679994170, 628925760908337480420110203736, 4109478867142143642923124190955500214
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..52
Crossrefs
Programs
-
PARI
a(n,q=6)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(sum(k=0,n,A[n+1,k+1])))
Formula
a(n) = [x^(6^n)] 1/Product_{j>=0}(1-x^(6^j)).