A111832 Number of partitions of 7^n into powers of 7, also equals the row sums of triangle A111830, which shifts columns left and up under matrix 7th power.
1, 2, 9, 205, 24901, 16077987, 58169810617, 1226373476385199, 154912862345527456431, 119679779055077323244243580, 574461679441277269788798742908435, 17346328772332966415272910459727649244337, 3328366331331467859745524303574824288197338547909
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..28
Crossrefs
Programs
-
PARI
a(n,q=7)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(sum(k=0,n,A[n+1,k+1])))
Formula
a(n) = [x^(7^n)] 1/Product_{j>=0}(1-x^(7^j)).