A111835 Triangle P, read by rows, that satisfies [P^8](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(8*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.
1, 1, 1, 1, 8, 1, 1, 232, 64, 1, 1, 36968, 16192, 512, 1, 1, 35593832, 21928768, 1047040, 4096, 1, 1, 219379963496, 178379459392, 11424946688, 67096576, 32768, 1, 1, 9003699178010216, 9288403489672000, 748093366229504, 5862250172416
Offset: 0
Examples
Let q=8; the g.f. of column k of matrix power P^m is: 1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) + (m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) + (m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ... where L(x) satisfies: x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ... and L(x) = x - 6/2!*x^2 + 142/3!*x^3 + 31800/4!*x^4 +... (A111839). Thus the g.f. of column 0 of matrix power P^m is: 1 + m*L(x) + m^2/2!*L(x)*L(8*x) + m^3/3!*L(x)*L(8*x)*L(8^2*x) + m^4/4!*L(x)*L(8*x)*L(8^2*x)*L(8^3*x) + ... Triangle P begins: 1; 1,1; 1,8,1; 1,232,64,1; 1,36968,16192,512,1; 1,35593832,21928768,1047040,4096,1; 1,219379963496,178379459392,11424946688,67096576,32768,1; ... where P^8 shifts columns left and up one place: 1; 8,1; 232,64,1; 36968,16192,512,1; ...
Crossrefs
Programs
-
PARI
P(n,k,q=8)=local(A=Mat(1),B);if(n
Formula
Let q=8; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111839).
Comments