A111836 Number of partitions of 7*8^n into powers of 8, also equals column 1 of triangle A111835, which shifts columns left and up under matrix 8th power.
1, 8, 232, 36968, 35593832, 219379963496, 9003699178010216, 2530260913162860295784, 4970141819535151534947497576, 69322146154435681317709098939119208
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
Crossrefs
Programs
-
PARI
a(n,q=8)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
Formula
a(n) = [x^(7*8^n)] 1/Product_{j>=0}(1-x^(8^j)).
Comments