A111858 Number of numbers m <= n such that 8 equals the first digit after decimal point of square root of n in decimal representation.
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11
Offset: 1
Examples
a(10) = 1, a(100) = 11, a(1000) = 99, a(10000) = 1010.
References
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 8] &, 100]] (* Paolo Xausa, May 17 2024 *)
Formula
For n > 1: if A023961(n) = 8 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.