cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A023961 First digit after decimal point of square root of n.

Original entry on oeis.org

0, 4, 7, 0, 2, 4, 6, 8, 0, 1, 3, 4, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 9, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 0, 0, 0, 1, 1, 2
Offset: 1

Views

Author

Keywords

Comments

When n is a square, a(n) is equal to 0, but the converse is not true, see A034096. - Michel Marcus, Sep 21 2015

Examples

			sqrt(1) = 1.00000000... hence a(1) = 0.
sqrt(2) = 1.41421356... hence a(2) = 4.
sqrt(3) = 1.73205080... hence a(3) = 7.
sqrt(4) = 2.00000000... hence a(4) = 0.
Note that 26 = 2 * 13 and sqrt(26) = 5.09901951... so a(26) = 0 even though 26 is not a perfect square.
		

Crossrefs

Programs

  • Maple
    A023961 := proc(n) return floor(10*sqrt(n)) mod 10: end: seq(A023961(n),n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Array[Function[n, RealDigits[N[Power[n, 1/2], 10], 10] // (#[[1, #[[2]] + 1]]) &], 110]
    fd[n_] := Module[{rd = RealDigits[Sqrt[n], 10, 10]}, First[rd][[Last[rd] + 1]]]; Array[fd, 90] (* Harvey P. Dale, Jan 16 2014 *)
  • PARI
    a(n) = floor(10*sqrt(n)) % 10; \\ Michel Marcus, Sep 21 2015

Formula

a(n) = A010879(A000196(100*n)). - Robert Israel, Jul 30 2015

A111851 Number of numbers m <= n such that 1 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 1, a(100) = 9, a(1000) = 99, a(10000) = 990.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 1] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n)=1 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.

A111852 Number of numbers m <= n such that 2 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=2 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 1, a(100) = 9, a(1000) = 99, a(10000) = 990.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 2] &, 100]] (* Paolo Xausa, May 17 2024 *)

A111853 Number of numbers m <= n such that 3 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=3 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 0, a(100) = 9, a(1000) = 99, a(10000) = 990.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    fddpQ[n_]:=Module[{a,b},{a,b}=RealDigits[Surd[n,2],10,10];a[[b+1]] == 3]; Accumulate[Table[If[fddpQ[n],1,0],{n,110}]] (* Harvey P. Dale, Feb 06 2019 *)
    Accumulate[Table[If[NumberDigit[Sqrt[n],-1]==3,1,0],{n,110}]] (* Harvey P. Dale, Aug 04 2025 *)

A111854 Number of numbers m <= n such that 4 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 13, 13, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=4 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 2, a(100) = 13, a(1000) = 112, a(10000) = 1030.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 4] &, 100]] (* Paolo Xausa, May 17 2024 *)

A111855 Number of numbers m <= n such that 5 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 0, a(100) = 7, a(1000) = 93, a(10000) = 970.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 5] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n)=5 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.

A111856 Number of numbers m <= n such that 6 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 1, a(100) = 11, a(1000) = 101, a(10000) = 1010.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 6] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n)=6 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.

A111857 Number of numbers m <= n such that 7 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=7 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 1, a(100) = 11, a(1000) = 99, a(10000) = 1010.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[NumberDigit[Sqrt[n],-1]==7,1,0],{n,120}]] (* Harvey P. Dale, Apr 20 2022 *)

A111859 Number of numbers m <= n such that 9 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 0, a(100) = 5, a(1000) = 81, a(10000) = 950.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 9] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n) = 9 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.

A111850 Number of numbers m <= n such that 0 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=0 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 3, a(100) = 15, a(1000) = 118, a(10000) = 1050.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    zd[n_]:=Module[{c=RealDigits[Sqrt[n],10,10],f},f=Last[c]+1;If[First[c][[f]]==0,1,0]]; Accumulate[Array[zd,90]] (* Harvey P. Dale, Feb 01 2012 *)
Showing 1-10 of 11 results. Next