cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A034096 Fractional part of square root of n starts with digit 0 (squares excluded).

Original entry on oeis.org

26, 37, 50, 65, 82, 101, 102, 122, 123, 145, 146, 170, 171, 197, 198, 226, 227, 228, 257, 258, 259, 290, 291, 292, 325, 326, 327, 362, 363, 364, 401, 402, 403, 404, 442, 443, 444, 445, 485, 486, 487, 488, 530, 531, 532, 533, 577, 578, 579, 580, 626, 627
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Given n > 4, n^2 + 1 is in the sequence. In fact, as n gets larger, more and more numbers just above n^2 are also in the sequence. For a particular n, the integers between n^2 and (n + 1/10)^2 are in this sequence. - Alonso del Arte, Mar 16 2019

Examples

			sqrt(145) = 12.041594578792295..., so 145 is in the sequence.
sqrt(146) = 12.083045973594572..., so 146 is also in the sequence.
sqrt(147) = 12.124355652982141..., so 147 is not in the sequence.
		

Crossrefs

Programs

  • Maple
    A034096 := proc(n) option remember: local k,rt: if(n=1)then return 26: else k:=procname(n-1)+1: do rt:=sqrt(k): if(not frac(rt)=0 and floor(10*rt) mod 10 = 0)then return k: fi: k:=k+1: od: fi: end: seq(A034096(n), n=1..50); # Nathaniel Johnston, May 04 2011
    seq(seq(x, x=floor(n^2) +1 .. ceil((n+1/10)^2)-1),n=1..100); # Robert Israel, Sep 21 2015
  • Mathematica
    zdQ[n_] := Module[{c = Sqrt[n], sr, i, l}, sr = RealDigits[c, 10, 5]; i = Last[sr] + 1; l = First[sr]; l[[i]] == 0 && !IntegerQ[c]]; Select[Range[700], zdQ] (* Harvey P. Dale, Oct 10 2011 *)
    Flatten[Table[Range[n^2 + 1, Floor[(n + 1/10)^2]], {n, 25}]] (* Alonso del Arte, Mar 16 2019 *)
  • PARI
    isok(n) = !issquare(n) && !(floor(10*sqrt(n)) % 10); \\ Michel Marcus, Sep 21 2015
    
  • PARI
    is(n)=my(s=sqrtint(n),s2=s^2); s2+s\5 >= n && s2 < n \\ Charles R Greathouse IV, Sep 07 2022
    
  • PARI
    list(lim)=my(v=List(),s=sqrtint(lim\=1)); for(n=5,s-1, for(i=n^2+1,n^2+n\5, listput(v,i))); for(i=s^2+1,min(s^2+s\5,lim), listput(v,i)); Vec(v) \\ Charles R Greathouse IV, Sep 08 2022

Formula

A023961(a(n)) = 0. - Michel Marcus, Sep 21 2015
a(n) = 10n + O(sqrt(n)). - Charles R Greathouse IV, Sep 08 2022

Extensions

Name clarified by Michel Marcus, Sep 21 2015

A111862 Second digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 1, 3, 0, 3, 4, 4, 2, 0, 6, 1, 6, 0, 4, 7, 0, 2, 4, 5, 7, 8, 9, 9, 9, 0, 9, 9, 9, 8, 7, 6, 5, 4, 3, 1, 0, 8, 6, 4, 2, 0, 8, 5, 3, 0, 8, 5, 2, 0, 7, 4, 1, 8, 4, 1, 8, 4, 1, 8, 4, 1, 7, 3, 0, 6, 2, 8, 4, 0, 6, 2, 8, 4, 0, 6, 1, 7, 3, 8, 4, 0, 5, 1, 6, 1, 7, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Crossrefs

Programs

A111851 Number of numbers m <= n such that 1 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 1, a(100) = 9, a(1000) = 99, a(10000) = 990.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 1] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n)=1 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.

A111852 Number of numbers m <= n such that 2 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=2 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 1, a(100) = 9, a(1000) = 99, a(10000) = 990.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 2] &, 100]] (* Paolo Xausa, May 17 2024 *)

A111853 Number of numbers m <= n such that 3 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=3 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 0, a(100) = 9, a(1000) = 99, a(10000) = 990.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    fddpQ[n_]:=Module[{a,b},{a,b}=RealDigits[Surd[n,2],10,10];a[[b+1]] == 3]; Accumulate[Table[If[fddpQ[n],1,0],{n,110}]] (* Harvey P. Dale, Feb 06 2019 *)
    Accumulate[Table[If[NumberDigit[Sqrt[n],-1]==3,1,0],{n,110}]] (* Harvey P. Dale, Aug 04 2025 *)

A111854 Number of numbers m <= n such that 4 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 13, 13, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=4 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 2, a(100) = 13, a(1000) = 112, a(10000) = 1030.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 4] &, 100]] (* Paolo Xausa, May 17 2024 *)

A111855 Number of numbers m <= n such that 5 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 0, a(100) = 7, a(1000) = 93, a(10000) = 970.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 5] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n)=5 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.

A111856 Number of numbers m <= n such that 6 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 1, a(100) = 11, a(1000) = 101, a(10000) = 1010.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 6] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n)=6 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.

A111857 Number of numbers m <= n such that 7 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=7 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 1, a(100) = 11, a(1000) = 99, a(10000) = 1010.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[NumberDigit[Sqrt[n],-1]==7,1,0],{n,120}]] (* Harvey P. Dale, Apr 20 2022 *)

A111858 Number of numbers m <= n such that 8 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 1, a(100) = 11, a(1000) = 99, a(10000) = 1010.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 8] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n) = 8 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.
Showing 1-10 of 17 results. Next