A111906 Numbers k such that fewer primes, among primes <= the largest prime dividing k, divide k than do not.
5, 7, 11, 13, 17, 19, 22, 23, 25, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 67, 68, 69, 71, 73, 74, 76, 77, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 109, 111, 113, 114, 115
Offset: 1
Keywords
Examples
22 is included because 11 is the largest prime dividing 22. And of the primes <= 11 (2,3,5,7,11), 2 and 11 (2 primes) divide 22, but 3 and 5 and 7 (3 primes) do not divide 22.
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
Programs
-
PARI
{m=115;v=vector(m);for(n=2,m,f=factor(n)[,1]~;c=0;pc=0;forprime(p=2,vecmax(f), j=1;s=length(f);while(j<=s&&p!=f[j],j++);if(j<=s,c++);pc++);v[n]=sign(pc-2*c)); for(n=1,m,if(v[n]>0,print1(n,",")))} \\ Klaus Brockhaus, Aug 21 2005
-
Python
from itertools import count, islice from sympy import sieve, factorint def a_gen(): for n in count(3): f = [sieve.search(i)[0] for i in factorint(n)] if len(f) < (f[-1]+1)//2: yield n A111906_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jun 22 2024
Extensions
More terms from Klaus Brockhaus, Aug 21 2005